

Data Compression in Blackbaud CRM Page 1

Data Compression in Blackbaud CRM Databases

Len Wyatt

Enterprise Performance Team

Executive Summary ... 1

Compression in SQL Server ... 2

Perform Compression in Blackbaud CRM Databases ... 3

Initial Compression... 3

Log Files and Compression .. 6

Prepare for Compression .. 7

Maintain Compression ... 7

What to Do with the Saved Space ... 8

Choose Compression Types .. 8

Benefits of Compression in Blackbaud CRM Databases ... 9

Storage Space Reduction and Compression Time ... 9

Performance Gains Measured in the Lab ... 11

Performance Gains Measured by Heifer .. 14

Executive Summary
Compression refers to applying mathematical techniques to make objects take less storage space than

they normally require. Most people are familiar with using the ZIP utility to compress documents. This is

useful to attach documents in email because they take up less space and are more likely to fit in a

recipient’s mailbox. SQL Server can apply similar methods to data in its tables and indexes. The data is

still in the database, but it’s stored in a way that requires less physical space. SQL Server can apply

various techniques to compress data.

Compression is probably not applied by default because it requires extra CPU time to compress data

when it is stored and to decompress data when it is read. The Microsoft SQL Server team may not have

wanted to decide this trade-off for everyone. However, modern servers are rarely limited by CPU

resources. The limiting factor in servers is more likely the amount of data that can be sent to and

fetched from the disk subsystem (I/O), so making data smaller is usually a good tradeoff. And since

compression saves memory on the server by compressing objects in memory as well as on disk, it also

reduces the amount of I/O since more information can be retained in memory.

Data Compression in Blackbaud CRM Page 2

Tests by the Enterprise Performance Team show significant performance benefits from compression in

the SQL Server databases that support Blackbaud CRM. Benefits vary based on factors such as the

database and workload, but we consistently found space savings. One test even reduced the space that

the database used by 44 percent.

To help customers realize the benefits of compression technology, the Performance Team developed a

set of T-SQL stored procedures (SPs) that find and compress the appropriate objects in SQL Server

databases. We tested these procedures extensively, and they are now available to our customers. The

scripts are intended for the database administrator (DBA) staff for self-hosted customers and the

Blackbaud SDO team for hosted customers. These groups are the target audience for this paper.

One benefit of data compression is that the technology is applied at the database level, below the level

of the Blackbaud CRM application. The application does not “know” about the internal storage

mechanism of the database, and compression does not change the logical behavior of the application.

This means you can apply compression to any version of Blackbaud CRM.

Compression in SQL Server
This section summarizes information that is available online. For more information about compression,

Microsoft’s Data Compression: Strategy, Capacity Planning and Best Practices article is particularly

useful.

SQL Server supports two types of compression in tables and indexes: Row compression and page

compression.

Row compression reduces the space to store metadata and stores fixed-length data in variable-length

formats. This isn’t just about storing CHAR data as VARCHAR; it even stores numeric data in fewer bits.

Page compression uses the same techniques as row compression, but it also uses prefix compression

and dictionary compression to look for repeating patterns in data and store a single copy of each

pattern. Page compression can substantially increase the space saved, but it uses additional CPU

resources.

For any object in the database, you must decide which type of compression to use. We return to this

question in Choose Compression Types.

When you apply compression to a database object such as a table or index in SQL Server, you alter the

object’s metadata. Statements that access the object do not change in any way; the SQL Server Storage

Engine deals with the object appropriately.

Here are some sample statements that apply compression to tables and indexes:

ALTER TABLE [dbo].[BATCHSPONSORSHIP]

REBUILD PARTITION = ALL WITH (DATA_COMPRESSION = ROW);

http://technet.microsoft.com/en-us/library/dd894051(v=SQL.100).aspx

Data Compression in Blackbaud CRM Page 3

ALTER TABLE [dbo].[REVENUETRIBUTE]

REBUILD PARTITION = ALL WITH (DATA_COMPRESSION = PAGE);

ALTER INDEX [IX_MKTSEGMENTATION_ID] ON [dbo].[MKTSEGMENTATION]

REBUILD WITH (DATA_COMPRESSION = ROW);

ALTER INDEX [PK_REVENUESCHEDULE] ON [dbo].[REVENUESCHEDULE]

REBUILD WITH (DATA_COMPRESSION = PAGE);

When you compress an object, it is rebuilt. The object is re-written in the database in the compressed

format, and then the uncompressed object is removed. This operation is logged, and unless you use

simple logging, which is not recommended for Blackbaud CRM, the transaction log file grows as you

compress objects. The Performance Team’s scripts stop compressing objects when the available log file

space falls below a specified threshold so that you can perform backups to reclaim the transaction log

file space. The goal behind this approach is to avoid growing the log file.

If users need to access the database during compression, you can perform online rebuilds to reduce

contention. This increases the amount of work to perform compression, but it avoids exclusive locks on

objects.

ALTER TABLE [dbo].[BATCHSPONSORSHIP]

REBUILD PARTITION = ALL WITH (DATA_COMPRESSION = PAGE, ONLINE = ON);

The Performance Team’s scripts include an option to specify online rebuilds. However, you cannot

perform online operations on objects that include columns with the data types text, ntext, image,

varchar(max), nvarchar(max), varbinary(max), xml, or large CLR. You must compress objects with

these data types without the online option. Because of these data type limitations and additional

overhead, we do not recommend online rebuilds for Blackbaud CRM databases.

Perform Compression in Blackbaud CRM Databases
In many SQL Server databases, DBAs choose the tables and indexes to compress on a case-by-case basis

based on principles like those outlined in Data Compression: Strategy, Capacity Planning and Best

Practices. However, a Blackbaud CRM database likely has thousands of tables and even more indexes,

so case-by-case decisions are not practical. You must automate compression.

In addition, the compression process must maintain state information so that you can resume it at any

time. This too must be automated.

To meet these needs, the Performance Team created a set of T-SQL stored procedures (SPs) to manage

the process. They allow DBAs to expeditiously handle the compression of thousands of objects within

the log file constraints of the local system. The SPs are posted on the Blackbaud CRM Data Compression

Tools Downloads page of the Blackbaud website. The download explains the SPs, but here is a summary:

Initial Compression

 Connect to the Blackbaud CRM database with SQL Server Management Studio and execute the

statements in the file. This creates the SPs.

http://technet.microsoft.com/en-us/library/dd894051(v=SQL.100).aspx
http://technet.microsoft.com/en-us/library/dd894051(v=SQL.100).aspx
https://www.blackbaud.com/default.aspx?pgpId=2255&ID=273&Bundle=Blackbaud+CRM+Data+Compression+Tool
https://www.blackbaud.com/default.aspx?pgpId=2255&ID=273&Bundle=Blackbaud+CRM+Data+Compression+Tool

Data Compression in Blackbaud CRM Page 4

 Run usp_CompressionSizeInfo before and after compression to monitor the space saved. This

step is optional.

 Run usp_PrepareCompression to create a few helper tables to automate compression.

 Run usp_UpdateCompressionSettings to change compression settings if necessary. The most

likely settings to change are LogFileFactor, OnlineOperation, and CompressionType.

o LogFileFactor controls the threshold where compression stops because the log file is

nearly full. When less than 1/LogFileFactor of the log file’s space remains, the process

stops. The default value is 10, so compression continues until less than 1/10th of the

space remains. To reserve more space, you can set this to a lower number.

usp_UpdateCompressionSettings @Variable = 'LogFileFactor', @Value = 5

o OnlineOperation determines whether to perform online rebuilds. By default, this is set

to “0” and online rebuilds are not performed. If compression occurs while users are

active, you can set OnlineOperation to “1” to use online rebuilds to reduce the risk of

blocking.

usp_UpdateCompressionSettings @Variable = 'OnlineOperation', @Value = 1

Keep in mind that even if you set OnlineOperation to “1,”online operations are not

available for objects that include columns with the text, ntext, image, varchar(max),

nvarchar(max), varbinary(max), xml, and large CLR data types.

o CompressionType controls the type of compression for database objects. For complete

details, see Choose Compression Types. By default, this is set to “1” for page

compression, but you can also set it to “2” for row compression or “3” to apply

heuristics that seek optimal system performance (response time) instead of maximum

space savings.

usp_UpdateCompressionSettings @Variable = 'CompressionType', @Value = 3

At this time, the Performance Team recommends compression type 1.

The remaining settings are OverwriteTableData, MaxUpdateRateForPage,

MinScanRateForPage, and MaxRelOpRateForPage. These settings are only relevant if you set

CompressionType to “3,” as discussed in Choose Compression Types.

 Run usp_CreateCompressionQueue to generate a list of objects in the database and create the

T-SQL command to compress each object based on parameters in the

CompressionAdmin.Settings table.

 Run usp_RunCompression to run statements from the compression queue sequentially and to

log results in a table of completed statements. Run this as many times as necessary to complete

all statements in the compression queue, subject to the transaction log space constraints of

your system. Depending on your situation, it might be best to run this each day as part of your

daily maintenance procedures, just before backups. Or you might want to crank through it on a

Data Compression in Blackbaud CRM Page 5

weekend and run log backups between calls to usp_RunCompression. If the database is set to

simple logging, which is not recommended for Blackbaud CRM, usp_RunCompression runs until

all statements are executed. For more information, see Log Files and Compression.

The procedure usp_RunCompression allows multiple instances to run in parallel without

interfering with each other. This speeds up the compression process, but the Performance

Team’s tests show a system running compression quickly becomes I/O limited. More than two

parallel instances are of limited value.

 Run usp_MonitorCompression at any time. This SP is for informational purposes. It shows

several things of interest.

This example shows that an ALTER TABLE statement is currently running. Next, it shows that

three statements are still in the queue and that eight statements completed with no execution

errors. Finally, it shows the total space for the transaction log, how much is used, and how much

remains. The DoMore column also indicates whether the usp_RunCompression procedure will

continue to run statements.

If errors occur during compression, MonitorCompression also lists them for DBAs to investigate.

 Run usp_MonitorCompression to check for errors after the compression process. Errors do not

usually occur, but the list can display up to 5. If additional errors occur, you can see the

complete list with this statement:

select *

from CompressionAdmin.StatementsCompleted

where ReturnStatus is not null or ErrorMessage is not null

One possible error is duplicate data in a table that prevents the creation of a unique index. The

message for this error is similar to:

The CREATE UNIQUE INDEX statement terminated because a duplicate key was

found for the object name 'dbo.MKTSOURCECODEMAP' and the index name '
IX_USR_MKTSOURCECODEMAP_SEGMENTATIONSEGMENTID_SEGMENTATIONTESTSEGMENTID_L

ISTID_WHITEMAILSEGMENTID'. The duplicate key value is (fe4718f0-d84d-

4b07-8fdf-7fd3f27ee1bd, <NULL>, <NULL>, <NULL>).

This message indicates a problem with the data in the table or the index definition, not the

compression process. In this example, the error occurs with a custom index and not an index in

Data Compression in Blackbaud CRM Page 6

the Blackbaud CRM base product. Diligent DBAs will likely want to investigate this, but no harm

results from leaving the index uncompressed.

 Run usp_CompressionSizeInfo before and after compression to monitor the space saved. This

step is optional.

 Run usp_CleanupCompression to remove all artifacts of the compression SPs from the system,

including the log. This step is optional. For ongoing maintenance purposes, we recommend that

you leave the tables and procedures in place.

Log Files and Compression

As noted above, usp_RunCompression stops when the available log space falls below a threshold. The

goal is to avoid growing the log file because that can have undesirable performance and storage space

consequences. This means DBAs need a strategy to deal with log space and the likely need to resume

the compression procedure. Here are some strategies to consider, depending on the needs of your site.

Option 1: Simple Logging. The simplest and fastest approach is to set the database to use simple

logging, perform compression, and then set the database back to full logging. This method includes

some risk because the change to simple logging breaks the log chain for the database and prevents you

from rolling forward from older backups. If you use this method, it is vital to perform a full backup

before you switch to simple logging and then perform another backup when you return to full logging

mode. This method is appropriate if you want to complete compression as quickly as possible during a

system down time window. If down time is not an option, use a different method.

Option 2: Frequent Backups. For databases managed by SDO, backups occur every 15 minutes by

default. Depending on how fast usp_RunCompression generates log data, the backup process may free

log space faster than usp_RunCompression generates it. In that case, usp_RunCompression can run

nonstop. In one experiment by SDO, however, the backup process could not keep up with a single

usp_RunCompression process. The good news is that if usp_RunCompression stops due to lack of log

space, you just run it again to resume the process.

Option 3: Backups When Compression Stops. If backups normally occur daily but you want to complete

compression in a short window (such as overnight or during the weekend), it is easy to run a T-SQL script

to start a backup when usp_RunCompression stops, then run usp_RunCompression again after the

backup finishes. Here is an example that starts backups as often as necessary. You can customize it to

your needs (especially your backup strategy).

 use MyDatabase

 declare @database varchar(100) = 'MyDatabase'

 declare @backupfile varchar(100) = 'D:\Backups\LogBackup_MyDatabase.bak'

 declare @remaining int

 set nocount on

 select @remaining = count(*) from CompressionAdmin.StatementQueue where SPID is null

 print convert(varchar(20), getdate(), 20) + ', Remaining: ' + convert(varchar(20), @remaining)

 COMPRESSION1:

Data Compression in Blackbaud CRM Page 7

 exec usp_RunCompression

 exec ('backup log ' + @database + ' to DISK = ''' + @backupfile + ''' with compression')

 select @remaining = count(*) from CompressionAdmin.StatementQueue where SPID is null

 print convert(varchar(20), getdate(), 20) + ', Remaining: ' + convert(varchar(20), @remaining)

 if @remaining > 0 goto COMPRESSION1

Option 4: Daily Backup Cycle. If your site does backups nightly, you may want to perform compression
at night to avoid creating load during the day. In this scenario, you can add a call to
usp_RunCompression in your daily maintenance scripts before the daily backup. Each night, the system
compresses objects as long as log space is available, and then it stops until the next night. Over the
course of several days, space becomes available – and performance improves – as the system works
through all the objects.

Prepare for Compression

Compression doesn’t change any logic in the database, but it requires a lot of physical work. You should

test compression to make sure you understand the process and to confirm that nothing goes wrong. All

Blackbuad CRM customers have staging systems in addition to their production systems, and we

recommend that you use your staging system for testing.

 Set up the staging system with a recent copy of the production database.

 Familiarize yourself with the performance of key operations on the staging system. Use a

stopwatch to time operations that are part of your acceptance criteria for upgrades.

 Compress the database with the scripts described in this paper. The process should take a few

hours, although this varies based on your machine and the size of the database.

 Use the stopwatch again to time key operations. If they aren’t faster, you still saved a bunch of

space. And if they are faster, you are a hero.

 Validate the functioning of maintenance processes and other operational tools.

 After everything checks out, schedule a time to repeat the process on the production system.

Maintain Compression

Blackbaud CRM is a complex application that dynamically generates new objects in the database over

time. As of version 4.0, none of these objects are compressed. Customizations can also create objects in

your database that are not compressed. To take advantage of compression for these objects, we

recommend that you periodically perform the compression steps. Perhaps on a monthly basis, run

usp_CreateCompressionQueue and usp_RunCompression. After the initial mass conversion to compress

objects, periodic re-checks are quick. We also recommend that you perform the compression steps after

upgrades because until version 4.0, patches and service packs are not aware of the compression option.

Data Compression in Blackbaud CRM Page 8

What to Do with the Saved Space

After you implement compression, it may be tempting to reclaim the saved space on the disks of your

server system. Before you do that, please consider two things:

 Databases tend to grow over time, so the saved space is valuable as a buffer against future

growth. When you leave the space in place, you create extra time before you need additional

space. Of course, it is still wise to monitor space usage as suggested in Manage File Growth in

Blackbaud CRM Databases. That article includes a script to monitor the space that files use so

that you can plan for growth.

 The way to reclaim the space is to “shrink” the data files. This operation is bad for performance

because it severely fragments the storage. For more information, see Why you should not shrink

your data files by SQL Server guru Paul Randal. If you absolutely must shrink data files, then

follow that action with a process to defragment the indexes. Shrinking and defragmenting are

time-consuming operations. They are also logged operations that carry some risk of expanding

the transaction log file, which is exactly what we took care to avoid in the compression

operations!

Choose Compression Types

The usp_CreateCompressionQueue SP determines the set of objects to compress. It evaluates each

table and index in the database to determine whether they are eligible for compression, and then it

determines the type of compression to use. The evaluation process is controlled by settings that an

experienced DBA can adjust with usp_UpdateCompressionSettings. The Performance Team

recommends page compression because it saves the most storage space and has excellent performance

characteristics. Our tests do not shown a compelling reason to choose the other compression types over

page compression.

In usp_UpdateCompressionSettings, you set CompressionType to “1” to use page compression for all

objects. You set CompressionType to “2” uses row compression for all objects. And if your site wants to

improve performance by focusing on response time rather than maximum space savings, you set

CompressionType to “3” to use a hybrid compression approach that applies heuristics on an object-by-

object basis to seek optimal system performance. Note: Initial tests do not indicate any performance

benefits from this method beyond the benefits from page compression. We left the option in place, but

we cannot recommend it over page compression without additional testing.

When you set CompressionType to “3,” the hybrid approach uses statistics about the usage of individual

objects to determine their compression types. Statistics are collected from the running system when

usp_CreateCompressionQueue is run. To get a complete picture, you should run the SP after the system

runs for a significant time – at least a day. To retain statistics from previous runs, set

OverwriteTableData to “0.” (The default is “1.”)

Hybrid compression determines the compression type to use for each object based on the following

values:

https://www.blackbaud.com/files/support/guides/enterprise/autogrth.pdf
https://www.blackbaud.com/files/support/guides/enterprise/autogrth.pdf
http://www.sqlskills.com/blogs/paul/why-you-should-not-shrink-your-data-files/
http://www.sqlskills.com/blogs/paul/why-you-should-not-shrink-your-data-files/

Data Compression in Blackbaud CRM Page 9

 If more than MaxUpdateRateForPage percent of the operations on an object are updates, use

row compression. Objects that are updated frequently use fewer CPU cycles with row

compression. The default value is 20 percent.

 If more than MinScanRateForPage percent of the operations on an object are scans, use page

compression. Objects that are scanned frequently require fewer I/O cycles if they take fewer

pages. The default value is 50 percent.

 If the object is used more than MaxRelOpRateForPage percent as much as the most used object

in the database, use row compression. Objects that are used most frequently may require fewer

CPU cycles with row compression. The default value is 1 percent.

 If the object is used less than MaxRelOpRateForPage percent as much as the most used object in

the database, use page compression. Objects that are used infrequently take less space with

page compression.

Benefits of Compression in Blackbaud CRM Databases
As noted above, compression is a good idea for two reasons: To save space and to improve

performance. The Performance team conducted tests to measure these benefits, and early results

support the real-world value of compression. We also measured how long it takes to compress a

database.

We used two approaches to test the value of compression. First, in the Enterprise Performance Lab, we

experimented with representative databases to measure the time to compress data and the amount of

compression. On one database, we also measured the performance of the system under a workload of

interactive user actions.

Second, our SDO team compressed the staging database for a hosted customer. The customer took

performance measurements of key business processes and user actions before and after the

compression to gauge the real-world value of compression.

These measurements are highly dependent on the database, server system, and workload. As they say

in the auto business, “Mileage may vary.” But we believe the results to be fairly representative.

Storage Space Reduction

and Compression Time

We measured the space that compression

saved in databases for two customers. The

first customer, Heifer International, is a

large organization with 4.6 million

constituents and 1.5 TB of data in their

database before compression.

The second customer, “Site 2,” is a

university with 1 million constituents and

Data Compression in Blackbaud CRM Page 10

250 GB of data in their database before

compression. The databases for these sites

were brought in to the Enterprise

Performance Lab and used for controlled

measurements.

For Heifer International, applying page

compression to all objects in the database

reduced the amount of space used by 44

percent, as shown in the Heifer database size

in Performance Lab chart. Compressing this

database took 5 hours 20 minutes running

continuously but not in parallel. We used

option 3 from Log Files and Compression, so

our results include time for log backups when

necessary. We could compress a database this

size overnight on our server. Row

compression did not save as much space as

page compression. It reduced the amount of

space used by 36 percent, but the

compression process ran faster at 4 hours

17 minutes. The hybrid approach’s results

were very similar to page compression.

The gains from compression were not

uniform for all filegroups, so DBAs should

continue to monitor the size and growth of

individual file groups after they apply

compression.

For Site 2, a 39 percent space savings

resulted from applying page compression to

all objects in the database, as shown in the

Site 2 database size in Performance Lab

chart. Applying row compression reduced

the amount of space used by 31 percent.

Results from applying the hybrid heuristic

method were very similar to page

compression.

The time required to perform compression

doesn’t vary much based on compression

type, as shown in the Site 2 time to perform

Data Compression in Blackbaud CRM Page 11

compression chart. However, using online operations results in a substantial increase in the time

required to perform compression, as illustrated in the Site 2 compression in parallel chart. When online

operations were used on a different server with less available RAM and a lower-performing disk

subsystem, the time required to perform compression skyrocketed much more than the measurements

in the chart would suggest.

The same chart also illustrates the impact of

running multiple instances of the compression

script in parallel. The lab server has a very

good disk I/O subsystem, but we still saw the

system quickly become I/O saturated when

running parallel instances. In the Performance

Lab, we did not see much benefit in running

more than two instances concurrently. In

another situation using a different server with

less available RAM and a lower-performing disk subsystem, two instances in parallel overloaded the

system much more than the measurements in the chart would suggest.

Performance Gains Measured in the Lab

The Performance Team constructed a workload to run using the Heifer database. This is used for a

variety of engineering purposes, and one application was to test compression. The workload represents

the activities that a number of users perform while interacting with the system. It allows us to create a

realistic but repeatable load on the system and to take performance measurements in that context.

(However, the workload does not include business processes at this time.)

With this workload, we measured the performance of the system before compression and after

compression. Based on these tests, we found several overall trends.

 On average, actions are more than 2 times faster with compressed data. In other words, an

average action takes less than half as long when using compressed data.

 Changes in response time varied widely.

o A number of actions are several times faster with compressed data.

o Many actions are not significantly affected one way or the other by compression.

o A few actions are somewhat slower with compressed data.

 The choice of page compression, row compression, or hybrid compression made an insignificant

difference, but we recommend page compression because it saves the most storage space and

has excellent performance characteristics.

We included 128 different types of user actions in the workload, and we ran each one many times

during the course of a workload run. We performed tests using all three compression methods. It’s too

much data to report fully in this paper, but the charts in this section show average response times for a

few of the action types after page compression.

Data Compression in Blackbaud CRM Page 12

The Response times for selected constituent actions chart is very typical of the results from our testing.

Many actions are not significantly altered, while some experience significant performance gains.

Futhermore, we observed a tendency for longer-running actions to experience the larger performance

gains. With more space, we could include many charts similar to this one. The Response times for

selected revenue actions chart shows that we observed some negative changes. They are not nearly as

big or as common as the gains, but negative changes did occur.

Because of the possibility of negative changes, we advise customers to test compression in their staging

systems before they deploy it in production. That said, we expect substantially positive performance

benefits from compression. On average, actions completed in half the time using compressed data.

While the performance of the system improved on average after compression regardless of compression

type, the resource usage decreased. Disk I/O decreased by nearly 20 percent, and CPU usage by more

than 20 percent.

Data Compression in Blackbaud CRM Page 13

Data Compression in Blackbaud CRM Page 14

Performance Gains Measured by Heifer

Heifer worked with SDO to test page compression on their staging system. They outlined a set of

acceptance tests and performed them before and after compression. The tests were performed on a

system that also hosts other databases. They were performed manually and timed using stopwatches,

and some variability is to be expected due to those factors. In addition, the staging server is a much

smaller machine than the production server. Still, the overall trend is similar to the observations from

the lab tests described earlier. Some things were a lot faster, many things did not change significantly,

and a few things were a little slower.

The Time to perform business processes chart shows the results of running business processes, while

the Time to respond to user actions chart shows actions that interactive users on the system might

perform.

Based on these results, Heifer is currently working with SDO to plan a deployment of compression in

their production system.

Data Compression in Blackbaud CRM Page 15

