Blackbaud CRM Custom Reports Guide

09/19/2012 Blackbaud CRM 2.94 Blackbaud CRM Custom Reports US

©2012 Blackbaud, Inc. This publication, or any part thereof, may not be reproduced or transmitted in any form or by any
means, electronic, or mechanical, including photocopying, recording, storage in an information retrieval system, or other-
wise, without the prior written permission of Blackbaud, Inc.

The information in this manual has been carefully checked and is believed to be accurate. Blackbaud, Inc., assumes no
responsibility for any inaccuracies, errors, or omissions in this manual. In no event will Blackbaud, Inc., be liable for direct,
indirect, special, incidental, or consequential damages resulting from any defect or omission in this manual, even if advised
of the possibility of damages.

In the interest of continuing product development, Blackbaud, Inc., reserves the right to make improvements in this manual
and the products it describes at any time, without notice or obligation.

All Blackbaud product names appearing herein are trademarks or registered trademarks of Blackbaud, Inc.

All other products and company names mentioned herein are trademarks of their respective holder.

BlackbaudCRMCustomReports-2012

Contents

ORI 0T LRESE I TDUENOE UL T 1 1000 1R
CREATING BLackBAUD CRM REPORTS 1
CODE SAMPLES FORTHE REPORT 5
PROSPECT PLAN STATUS DURATIONS REPORT 11
FINDING THE DATA 17
Finding the Data in the Application L 17
Finding Data in the OLTP Databasel 19
Finding Data in the Data Warehouse Database 24
Code Formatting .. o L 26
Creating an OLT P VersioN ..o o 27

Overlapping Perspective Stored Procedure 38
Consecutive Perspective Stored Procedure ... i 39
Nonconsecutive Perspective Stored Procedure 41
WIRING UP THEREPORT 44
Create an RDL File . . o 44
Create @ ReP Ot SPOC 54
Report Spec for OLT P Version . 59
Create a Page, Task, and Package 65
Load the Package . ..o 79
POLISHING THE REPORT 82
Formatting the RepPoOrt . 82
Adding Parameters 84
Update the RDL File with the Parameter ... e 87
Add a Ul Model for the Parameter . o 90
ProspectPlanStatusDurationsReportUIModel.vb .. . 96
ProspectPlanStatusDurationsReport.html . . 96
REPORTING OFF THE WAREHOUSE 98
Should the Report Query a Table or a VieW? .. 98
Something is Missing from the Table or View 99

Creating a Data Warehouse Version L 100

Extending the Warehouse with a Table to Extend the Fact 102
Creating Another Data Warehouse Version 119
Extending the Data Warehouse with New Tables and Views 121

BBDW_FACT_PROSPECTPLANSTAGEOCCURRENCE _EXT.AtSX ... ool 124
APPENDIX 132

Application Features
Create @ RePoOrt SPeC . il 141
Exploring a Report Spec

blackbaud

chapter 1

Creating Blackbaud CRM
Reports

This is a document is about creating reports for Blackbaud CRM. In this guide we explore the creation of a report
about time periods for stages in a prospect plan. Along the way, we declare a design for the report, explore the

application for features related to the report, and look at the transactional database and the data warehouse
database data structures related to the report.

We will build a report based on the design which finds data in the transactional database. Then we will create
reports which gather data from the data warehouse database. In the course of reporting from the data ware-
house, we will explore extending the data warehouse to create a better structure for the report data.

This guide also includes an appendix of related, general topics: Appendix on page 132

2 CHAPTER 1

Blackbaud CRM™

Recent searches

Recently accessed

Welcome, Tom Tregner~ | ‘;‘_’r' Seare,

Home ~ | Constituents = | Marketing and Communications ~ | Revenue = | Events = [Memberships = | Prospects = [Volunteers ~ | Foundations = | Sponsorsh

Prospect Plan Stage Durations Report (OLTP Version)

Prospect Plan Type Code: |Major giving |:r

lofr boopl | | Find | Next

Stage Aerage days in stage (overlapping) Min Max
Cultivation 006 000 1135
Identification 003 0.00 570
Megotiation 0.00 0.00 0.00
Solicitation 0.00 0.00 0.00

Average Average

consecutive days in stage times in a stage

(Average duration of {Average

stage occurrences) number of stage

OCCUITENCEs)

Cultivation 0.04 000 4.50 157
ldentification 0.06 0.00 6.23 1.63
Megotiation 0.00 0.00 0.00 223
Solicitation 0.00 000 0.00 1.37

Stage Average nonconsecutive days in Min Max

slage
Cultivation | 0.04 0.00 6.12
Identificaion 006 0.00 1017
Megotiation 0.00 0.00 0.00
Solicitation | 0.00 000 0.00

E16/2012 Prepared by: BENT TomTr Page1of 1

CREATING BLACKBAUD CRM REPORTS 3

a Prospects

Prospect research Research tools Prospe
L Search constituents & search external prospecting database Sear
&% Manage research groups & Find external properties and 2 add
&/ Add a prospect research request businesses & My f§
& My prospect research page & Mapping B! Majg
@ Prospect analysis B, sear
E# Manage model scores and ratings & 2dd
£l Assig
£l Man
< Add
ﬂ- Sear
(@ Mand
Configuration Reports
Bl Capacity formula management E| opportunity pipeline
&8 Edit confidence settings =| Planned gift detail
Bl Define likelihood percentages [E prospect plan analysis

B8 prospect research report templates =] prospect plan follow-up

Prospect Plan Stage Durations Report
(OLTP Version)

{El prospect Plan Stage Durations Report
(First Data Warehouse Version)

[E| prospect Plan stage Durations Report
(Second Data Warehouse Yersion)

&l Major giving setup
B8 stewardship plan templates
Bl Wealth and ratings data

4 CHAPTER 1

blackbaud

chapter 2

Code Samples for the
Report

The code samples for this document are located at:

https://www.blackbaud.com/files/support/infinitydevcasestudies/ProspectPlanStageDurationsReports.zip

Projects

The code samples include a Blackbaud Infinity catalog project. The project includes the specs necessary to load
the report into the application. Reports are primarily defined by RDL files and these are included in the project as
resources. But there are also specs which define the relationship of the Blackbaud Infinity feature to the RDL
(Report Specs). There are also specs to expose the report in the Blackbaud Infinity application Ul (Page Specs and
Task Specs with the Report Spec). Finally there are specs to assist with loading the features into the Blackbaud
Infinity application (Package Specs).

Because Visual Studio 2010 does not provide much functionality for editing RDL files, the RDL files for this sam-
ple were edited in another flavor of Visual Studio, Business Intelligence Development Studio. Report Builder 2
could also have been used. Those files were copied to the catalog project.

The Ul for the report's parameter is implemented with a Blackbaud Infinity Ul Model. This requires a Blackbaud
Infinity Ul model project. That project is contained in the same solution as the catalog project.

The solution also contains a project for Blackbaud Data Warehouse revisions extensions. Because Visual Studio
2010 does not provide much functionality for editing SSIS packages, the files for the ETL extensions to the data
warehouse were edited in Business Intelligence Development Studio. Rather than copy those to the Visual Stu-
dio 2010 solution, those files were maintained in a separate project.

Files

There are some environment-specific post-build commands in the projects. To use the samples, you will have to
modify those for your environment. Once built, these files must be copied to application folders:

Custom.AppFx.PlanStageDurations.Catalog.dll
from the catalog project build

builds to Cus-
tom.AppFx.P1l-

anStageDurations.Catalog\Custom.AppFx.PlanStageDurations.Catalog\bin\Debug

https://www.blackbaud.com/files/support/infinitydevcasestudies/ProspectPlanStageDurationsReports.zip

6 CHAPTER 2

copytoBlackbaud\bbappfx\vroot\bin
Custom.AppFx.PlanStageDurations.UIModel.dll
from the Ul model project build

builds to Cus-
tom.AppFx.P1l-

anStageDurations.Catalog\Custom.AppFx.PlanStageDurations.UIModel\obj\Debug

copytoBlackbaud\bbappfx\vroot\bin
ProspectPlanStageDurationsReportOLTPVersion.html
ProspectPlanStageDurationsReportDataWarehouseVersionl.html
ProspectPlanStageDurationsReportDataWarehouseVersion2.html

from the Ul model project

located in

Cus-
tom.AppFx.Pl-
anStageDurations.Catalog\Custom.AppFx.PlanStageDurations.UIModel\htmlforms

copy to Blackbaud\bbappfx\vroot\browser\htmlforms
Revisions.dll

from the data warehouse revisions project build

builds to

Cus-
tom.AppFx.P1l-
anStageDurations.Catalog\Custom.AppFx.PlanStageDurations.Revisions\Revisions\obj\De

copy to Blackbaud\bbappfx\MSBuild\Datamarts\BBDW\Extend\Revisions
BBDW_FACT_INTERACTIONACTUALTIMES_EXT.dtsx
BBDW_FACT_PROSPECTPLANSTAGE_EXT.dtsx
BBDW_FACT_PROSPECTPLANSTAGEOCCURRENCE_EXT.dtsx

from the Analysis Services project

copytoBlackbaud\bbappfx\MSBuild\Datamarts\BBDW\Extend\SSIS

CODE SAMPLES FOR THE REPORT 7/

O)
4 &% Custom.AppFx.PlanStageDurations.Catalog
w=d My Project
[Images
&= Catalog.ruleset
&=] PlanStageDurationsDW1 . Reportaxml
&/2] PlanStageDurationsD'W1Report.Packagexml
@] PlanStageDurationsDW1Report.Pagesxml
&2] PlanStageDurationsDW1Report. Taskxml
&= PlanStageDurationsDW2.Reportxmi
@/2] PlanStageDurationsDW2Report.Packagexml
@] PlanStageDurationsDW2Report.Page.sxml
&2] PlanStageDurationsDW2Report. Taskxml
&=] PlanStageDurationsOLTP.Reportxml
&/2] PlanStageDurationsOLTPReport.Packagexm
&%) PlanStageDurationsOLTPReport.Pagesxm|
&2] PlanStageDurationsOLTPReport. Task.xml
&[5 PlanStageDurationsReport.rdl
Eﬂ] Plan5tageDurationsReportDW1.rdl
@[3 PlanStageDurationsReportDW2.rdl
4 Gi%] Custom.AppFx.PlanStageDurations. UIModel
@=d My Project
4 |7 htmlforms
[custom.appfeplanstagedurations
& #] ProspectPlanStageDurationsReportDataWarehouseVersionl. html
& #] ProspectPlanStageDurationsReportDataWarehouseVersion2.htrnl
@|#] ProspectPlanStageDurationsReportOLTPVersion.html
4 [F LinkedSpecs
ﬁiﬁ] Plan5tageDurationsDW1. Report.aml
&g PlanStageDurationsDW2.Report.xml
ﬂiﬁ PlanStagelturationsOLTP.Report.xml
& postbuild.bat
&7e] ProspectPlanStageDurationsReportDataWarehouseVersionl UIModel.vb
&{e] ProspectPlanStageDurationsReportDataWarehouseVersion2UIModel.vb
@fe] ProspectPlanStageDurationsReportOLTPVersionUIModel.vb
=] UModel.ruleset
4 E%] Revisions
&=d My Project
[Images
&=] DBREV1000L.XML
&/=] DBREVI0002.XML
=] Migrated rules for Revisions.ruleset

Deployment

8 CHAPTER 2

Two versions of the report use the data warehouse and extensions to the warehouse. After the
Revisions.dll and SSIS packages are copied to the application folders, the data warehouse must be rede-
ployed and the ETL must be reset and refreshed.

Deploy Blackbaud Data Warehouse

Note: There are no revisions in the sample to support custom security. So you will have to ensure the report
user has permissions in the data warehouse database. This includes permissions to execute the stored pro-
cedures used by the reports.

All three versions include specs to expose the reports in a Blackbaud Infinity application. There are three pack-
ages in the catalog project DLL, one for each version. Each package must be loaded.

Package Specs

Warning: The loading mechanism for Report Specs overrides the data sources in the RDL when it loads the RDL.
The data warehouse versions use two data sets. The extra data set uses the OLTP database as a data source.
The reason for this is to avoid an extra extension to the warehouse just to support code table names used by
the report parameter. So once you load the report, you will have to reconfigure that data source for the those
reports in Reporting Services. You could instead remove the data set and populate the acceptable values for
the parameter through the Ul model only. But then there would be no drop-down for those values when the
report is accessed through Reporting Services.

https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cochdeploybbdw.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cochdeploybbdw.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cochdeploybbdw.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cochdeploybbdw.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/infps-developer-help/Content/InfinityPackageSpecs/WelcomePackageSpecs.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/infps-developer-help/Content/InfinityPackageSpecs/WelcomePackageSpecs.htm

CODE SAMPLES FOR THE REPORT 9

Hame > Biackbaud > AppFx > BELnfinfty > Custom Aaports > Misc Reparts

5QL Server Reporting Services

bs‘g Prospect Plan Stage Durations Report (Data Warehouse Version 1)

BBInfinity
20 A shared data source

®'BEInfinity/Blackbavd OLAFP Reports/Blackbawd OLAF 501 dats source

Blackbsud/AppF

Data source type: | Microsoft SQL Server -

= Connection StiNg: [ats Source=MIHFXES -

Cache Refresh Opticns =
MESCLSERVERZMER; Initial =

=

Report History Catalog=BE|nfinity
g Connect using:
Snapshot Options i, Credentisle supplied by the user running the report

Display the following text to prompt wser for

|T}"DE o enter 3 Eser name 3nd pass

O Use 25 Windows credentisls when connecting to the data source

zssword: | |

Use a=s Windows credentials when connecting to the dsta source

Dats source type: | Microsoft SOL Sarver -

Cennsction Stng: Dats Sowrce=MJHFXES
MSS2LSERVERZO0ER; Initial
Catalog=BEInfinity_RFT_BEDW

Connect using:
7 Credentisls supplied by the user running the report

Cazplay the foflowing text to prompl wse

ecting to the dats source

it Credentisls stored securshy in the report server

een mads to the dats source

% Credentials are not required

10 CHAPTER 2

blackbaud

chapter 3

Prospect Plan Status
Durations Report

This section is the design which will be implemented in the rest of the document. If you want to skip the design
details, you can skip this section and refer back to it as you read the remaining sections.

Goal

Create a report which shows average time in a stage of a prospect plan, the maximum time in stage, and the mini-
mum time in stage.

Major Obstacle

The times associated with prospect plan stages are the start and end datetimes for prospect plan steps, which
are interactions. There is no data structure in the transactional database which represents the duration of a stage
in a prospect plan for a prospect. There are different ways to interpret these times to determine duration of a
stage.

Design

There are different types of prospect plans. Major giving is one type. There should be a filter on the report for
plan type. The goal of this design is fulfilled by selecting Major giving from the filter. But reports for each plan
type are possible if a different plan type is selected from the filter.

During a prospect plan, prospects can move back and forth between stages. For example in the first step of a
plan, a prospect may be in the Identification stage. In the second step, the prospect may be in the Cultivation
stage. And in the third step, the prospect may return to the Identification stage. So the prospect may spend non-
consecutive timein a stage.

A step occurs on a single day. It is a type of interaction. So the time in a stage can be determined from the time of
the first step in a stage and the time of the first step in the next stage. But because the prospect plan can have
nonconsecutive occurrences of a stage, there are different ways to consider the duration of a stage.

The report will show a nonconsecutive, consecutive, and overlapping perspective. These will be explained in
more detail.

Note: Overlapping steps poses another question. If a next stage's first step starts with a time that overlaps with
a step associated with a previous stage, should the end time of the step associated with the previous stage be

12 CHAPTER 3

considered or should the start time of the next step be considered? Furthermore, this can happen for more
than two interactions (steps). But this will only occur in the course of a day since you can only enter one date
and not a start and end date for a step.

The report will not include information for steps that are not completed.
Note: The report could also exclude prospect plans which are active.
The report should be filterable by constituency of prospect, by prospect plan type, or both.

Note: The only parameter implemented in this document and the sample is prospect plan type.

Issue 1 - Nonconsecutive Perspective

The nonconsecutive perspective primarily communicates the average days in a stage. But it does not com-
municate whether a prospect plan left a stage and returned to it. Also, the nonconsecutive perspective does not
communicate how many times a prospect plan entered a stage. However, the calculation does account for leav-
ing and returning. For a nonconsecutive perspective, the report will show average days in stage where the cal-
culation is:

End time for a stage occurrence = IF there is a subsequent step in the prospect plan THEN Start time for
first step after the last step in a stage occurrence ELSE IF the prospect plan is completed, End time for the last
step in the plan

Keep in mind that a stage occurrence with no subsequent step will not be considered if the prospect plan
is not complete. So the condition that the prospect plan be completed is always true for the preceding cal-
culation.

Total days in a stage occurrence = End time for a stage occurrence - Start time for the first step in the
stage occurrence

Total days in a stage in a prospect plan = Total of each (Total days in a stage occurrence)

Average days in stage (nonconsecutive) = Total days in a stage in a prospect plan / Number of prospect
plans

In a prospect plan with the steps that follow, the nonconsecutive times in each stage are calculated:

1: Identification, 06/05/2012 6:30:00 PM - 06/05/2012 5:00:00 PM
2: ldentification, 06/06/2012 7:29:00 PM - 06/06/2012 6:15:00 PM
3: Cultivation, 06/09/2012 4:58:00 PM - 06/09/2012 3:30:00 PM

4: |dentification, 06/11/2012 9:51:00 AM - 06/11/2012 6:30:00 AM
5: Cultivation, 06/17/2012 12:58:00 PM - 06/17/2012 12:05:00 PM
6: Cultivation, 06/21/2012 12:00:00 AM - 06/21/2012 12:00:00 AM
7: Solicitation, 06/22/2012 12:00:00 AM - 06/22/2012 12:00:00 AM

8: Solicitation, no actual dates yet

PROSPECT PLAN STATUS DURATIONS REPORT 13

06/05/2012 - 06/05/2012 06/09/2012 - 06/09/2012 06/17/2012 - 06/17/2012 06/21/2012 - 06/21/2012
Identification Cultivation Cultivation Cultivation

06/22/2012 - 06/22/2012
06/06/2012 - 06/06/2012 Solicitation
Identification

06/05/2012 06/22/2012

06/11/2012 - 06/11/2012
Identification

¢ Identification days = 3.9375 days + 6.232638889 days = 10.17013889 days

The first Identification step started at 06/05/2012 5:000:00 PM and the next stage (Cultivation) started at
06/09/2012 3:30:00 PM. The difference is 3.9375 days. The plan returned to the Identification stage at
06/11/2012 6:30:00 AM and returned to Cultivation at 06/17/2012 12:05:00 PM. The difference is
6.232638889 days.

o Cultivation days = 1.625 + 4.496527778 = 6.121527778

e Solicitation days is considered to be indeterminate because there is an open Solicitation step

06/05/2012 - 06/05/2012 06/09/2012 - 06/09/2012 06/17/2012 - 06/17/2012 06/21/2012 - 06/21/2012
Identification Cultivation Cultivation Cultivation
D6/05/2012 - 06/09/2012 06/11/2012 - 06/17/2012 06/17/2012 - 06/22/2012
Identification Stage Occurrence Identification Stage Occurrence Cultivation Stage Occurrence

06/09/2012 - 06/11/2012

Cultivation Stage Occurrence 06/22/2012 - DB/22/2012
06/06/2012 - 06/06/2012 Solicitation
Identification
06/05/2012 06/22/2012

06/11/2012 - 06/11/2012
Identification

Then those times for each prospect plan are totaled and divided by the number of prospect plans. The minimum
and maximum are also based on the nonconsecutive times.

14 CHAPTER 3

Stage Average nonconsecutive days in stage|Min | Max
Identification | xx.xx XX XX [XX.XX
Cultivation | xx.xx XX. XX [XX. XX
Solicitation | xx.xx XX. XX | XX. XX
Negotiation |xx.xx XX. XX [XX. XX

Issue 2 - Consecutive Perspective

The consecutive perspective primarily communicates the average consecutive days in a stage. This is the average
duration of stage occurrences for a stage. The perspective also communicates the average number of times pros-
pect plans enter a stage. For a consecutive perspective, the report will show average days in a stage where the cal-
culation is:

Total consecutive days in a stage in a prospect plan = Total days in a stage occurrence

Average consecutive days in stage = Total of (Total consecutive days in a stage in a prospect plan) / Total
for all prospect plans of the total number times in a stage

The report will also show average times in a stage where the calculation is

Average times in a stage = Total number of times in a stage / Number of prospect plans

Identification(a) = 3.9375 days

e Cultivation(a) = 1.625 days

¢ Identification(b) = 6.232638889 days

e Cultivation(b) = 4.496527778 days

e Total times in Identification for this plan =2
e Total times in Cultivation for this plan =2

¢ Solicitation days is considered to be indeterminate because there is an open Solicitation step

Average consecutive days in stage Average times in a stage
Stage Min |Max
(Average duration of stage occurrences) (Average number of stage occurrences)
Identification | xx.xx XX XX | XX.XX | X.X
Cultivation [xx.xx XX XX | XX XX [X. X
Solicitation | xx.xx XX XX | XX XX | X.X
Negotiation |xx.xx XX XX [XX XX | X.X

Issue 3 - Overlapping Perspective

PROSPECT PLAN STATUS DURATIONS REPORT 15

The overlapping perspective includes the time spent in another stage if there are nonconsecutive occurrences of
stages. It does not express the average number of times a prospect plan spends in a stage. For an overlapping
perspective, the report will show average days in a stage where the calculation is:

Total days in stage = End datetime for the last step in stage in a prospect plan - Start time for first step in
stage in a prospect plan

Average days in stage (overlapping) = Total days in stage / Number of prospect plans
The report will also show average times in a stage where the calculation is
Average times in a stage = Total number of times in a stage / Number of prospect plans
e Identification = 06/11/2012 9:51:00 AM - 06/05/2012 5:00:00 PM = 5.70208333333333 days
e Cultivation(a) = 11.3541666666667 days

¢ Solicitation days is considered to be indeterminate because there is an open Solicitation step

06/05/2012 - 0B/05/2012 06/09/2012 - 06/09/2012 06/17/2012 - 0BM7/2012 06/21/2012 - 06/21/2012
Identification Cultivation Cultivation Cultivation
06/05/2012 - 06/11/2Q) 2
Identification Stage Interval - Qverlapping
A \
Y
06/09/2012 - 06/21/2012 06/22/2012 - 06/22/2012
06/06/2012 - 06/06/2012 Cultivation Stage Interval - Overlapping Solicitation
Identification
Q6/05/2012 06/22/2012
06/11/2012 - 06/11/2012
Identification
Stage Average days in stage (overlapping) |Min |Max
Identification | xx.xx XX XX [XX. XX
Cultivation | xx.xx XX. XX | XX. XX
Solicitation | xx.xx XX XX | XX. XX
Negotiation |xx.xx XX XX | XX XX

Note: We could alternately consider the start datetime for the first step and the start datetime for the step
after the last step in the stage.

Overlapping Alternative:

Total days in stage = Start time for step after last step in stage in a prospect plan - Start time for first step

16 CHAPTER 3

in stage in a prospect plan

Average days in stage (overlapping) = Total days in stage / Number of prospect plans
The report will also show average times in a stage where the calculation is

Average times in a stage = Total number of times in a stage / Number of prospect plans

¢ I|dentification = 11.76944444 days
e Cultivation(a) = 12.29305556 days

¢ Solicitation days is considered to be indeterminate because there is an open Solicitation step

06/05/2012 - 06/05/2012 06/09/2012 - 06/09/2012 061712012 - 06/17/2012 06/21/2012 - 06/21/2012
Identification Cultivation Cultivation Cultivation

06/05/2012 - 06/17/2012
|dgntification Stage Interval - Overlapping
A\

'
06/09/2012 - 06/22/2012 06/22/2012 - 06/22/2012
06/06/2012 - 06/06/2012 Cultivation Stage Interval - Overlapping Solicitation
Identification
06/05/2012 06/22/2012

06/11/2012 - 06/11/2012
ldentification

blackbaud

chapter 4
Findi the Dat
(RURRNTE 100 DTSR WRUTOET FRURARN T 1 i | | [

Finding the Data in the Application ... 17
Finding Data in the OLTP Database 19
Finding Data in the Data Warehouse Database L 24
Code FOrmatting ... o L 26
Creating an OLT P VersioN 27

Within these topics we will look at how to find data in the application, the transactional database, and in the data
warehouse database. Then we will create Transact-SQL queries to calculate the metrics described in Prospect Plan
Status Durations Report on page 11.

Finding the Data in the Application

For information about Prospects functionality in Blackbaud CRM, see Prospects Guide.

This metric isn't surfaced in Blackbaud CRM as of version 2.93. For example, a KPI which shows average days in a
stage could be displayed on a page in Blackbaud CRM. But Blackbaud CRM does show which stage is associated
with a given step and which stage is associated with a prospect plan.

To find the features that show Prospect Plan Stage information, you can browse Blackbaud CRM features
through navigation, the search, or the Administration functional area. For more information, see Application Fea-
tures on page 132.

Here is one path to information about Prospect Plan Stages: Prospects > Major Giving Management
> Major Giving Management - Prospects.

https://www.blackbaud.com/files/support/guides/enterprise/prospect.pdf
https://www.blackbaud.com/files/support/guides/enterprise/prospect.pdf

18 CHAPTER 4

Blackbaud CRM™

|Home = | Constituents = | Marketing and Communications ~ |Revenue ~ [Sales = ||

Recent searches

W |
ode table search ‘3 PI'OSPECtS

search

Prospect research

Recently accessed

& Constituent search

2, Add an individual

& Prospect Quick Search

& Add a prospect research request
& My prospect research page

#) Manage research groups

@ Prospect analysis

E Manage modeling and propensity

Organization
8, Add an organization
& Organization search

Major giving

/",’ Major giving management J

i =8 =T e A==

- Prospects

Major giving management

Major giving
= isers and steps

“@ Prospects
Emperttiiitics
Planned Gifts

FINDING THE DATA 19

! @ Major Giving Management - Prospects

Unassigned Prospects Prospects Without Recent Activity

Prospects in Pipeline

Organizational team: |v'p1 7

By plan type | Breakdown of selected plan type =]
0% l Board recruitment 1 YPe | Major giving |
|

21% Planned giving 63 13% | Identification 32
21% MNegotiation 50
7% Solicitation 16

8% Cultivation 18

Finding Data in the OLTP Database

An entity relationship diagram for Prospects in an Infinity database is here: Prospects ERD

One part of the diagram that relates to this report example is:

https://www.blackbaud.com/files/support/guides/infinitytechref/Content/Resources/ERD/BBEC 2.93 ERD/BBEC 2.93 Prospects ERD.png
https://www.blackbaud.com/files/support/guides/infinitytechref/Content/Resources/ERD/BBEC 2.93 ERD/BBEC 2.93 Prospects ERD.png

20 CHAPTER 4

The gydlem allowsyou ko keen track of dap
fnd=EkErnaw plamned with propeds
depsihe fundmler complketed win
poEects, overdus 22ps, and TR
fundEkemin yourgEen.

b

Flan oulinesae
cRaEed aspanofl
conflguiing major
gving =tup. You
oan defined detaull
planse0s MEt uEE
oan 2pply o Melr
pREec plEnswikn
detall how you L
Intend to win a
donatlon fom a
pR@ect They
Inciude die,
abjesihes
fundakers, dages
dales and S2psyou
Intend fo fake, sud
asmestingsand
phone calls When
jou create 3 plan
outling, your
Promedsu®EcEn
amgn Me atlinesto
plars ey crate an
e promect recom.

An interaction is associated with a plan outline step through a foreign key. The column is PLAN-

OUTLINESTEPID oftypeuniqueidentifier.TheGUIDs inthe INTER-

ACTION.PLANOUTLINESTEPID column correspondto IDinthe PLANOUTLINESTEP table.

A plan outline step is associated with a plan outline through a foreign key. The column is PLANOUTLINEID of
typeuniqueidentifier.TheGUIDs inthe PLANOUTLINESTEP.PLANOUTLINEID column correspond

to IDinthe PLANOUTLINE table.

An interaction is associated with a constituent through a foreign key. The column is CONSTITUENT ID of type
uniqueidentifier.TheGUIDs inthe INTERACTION.CONSTITUENTID column correspondto IDin

the CONSTITUENT table.

FINDING THE DATA 21

An interaction is associated with a prospect plan through a foreign key. The column is PROSPECTPLANID and
the fields are of type uniqueidentifier. The GUIDs inthe INTERACTION.PROSPECTPLANID column
correspond to IDinthe PROSPECTPLAN table.

Notice PROSPECTPLANSTATUSCODEID appears onthe INTERACTION, PLANOUTLINESTEP, and PROS -
PECTPLAN tables. PROSPECTPLANSTATUSCODEID indicates which stage of the plan to which a step
belongs. PROSPECTPLANSTATUSCODEID identifies an entry on the PROSPECTPLANSTATUSCODE code
table. The code table is called Prospect Plan Stage. But the table nameis PROSPECTPLANSTATUSCODE.

PROSPECTPLANSTATUSCODE (Prospect Plan Stage) can be managed from Administration > Code Tables. The
category for the Prospect Plan Stage code table is Major Giving. Typical entries include Identification,
Cultivation, Solicitation, and Negotiation.

The INTERACTION table contains other status information in the STATUSCODE, STATUS, and

COMPLETED columns. STATUSCODE isa t inyint column that maintains these codes: 0=P1lanned,
1=Pending, 2=Completed, 3=Unsuccessful, 4=Cancelled, 5=Declined.COMPLETED s
a computed int column with this expression: case when STATUSCODE in (2,3,4,5) then 1
else 0 end.SoCOMPLETED istrue (1) when STATUSCODE contains the tinyint code representation for
Completed, Unsuccessful, Cancelled, or Declined. STATUS is a computed field which provides a translation for
STATUSCODE:

CASE [STATUSCODE]

WHEN O THEN N'Planned'
WHEN 1 THEN N'Pending'
WHEN 2 THEN N'Completed'
WHEN 3 THEN N'Unsuccessful'
WHEN 4 THEN N'Cancelled'
WHEN 5 THEN N'Declined'
END

Note: There are also status-related columns for funding requests. But these columns support Foundations
functionality.

22 CHAPTER 4

On the PROSPECTPLAN table, PROSPECTPLANSTATUSCODEID indicates Current plan stage. This is the
stage of the most recently completed plan step. On the INTERACTION table, PROS-
PECTPLANSTATUSCODEID indicates the stage associated with the interaction, which also represents a step.
On the PLANOUTLINESTEP table, PROSPECTPLANSTATUSCODEID indicates the stage associated with the
plan outline step. A plan outline step is not a step in a prospect plan. A plan outline step is a step in a plan out-
line. Plan outline steps and plan outlines are template mechanisms. Plan outlines establish the default steps
created when you add a plan based on a plan outline.

@ Opportunities Solicitors and Participants ~ Documentation Planned Gifts ~ Manager History

Marrative

COMPLETED =0 g

STATUSCODE

STATUS (computed) PROSPECTPLANSTATUSCODE

) Write a letter | /' Edit steps & Add

Status End time Time zone Owner Stage Contact method | 1§
| Planned Greg Thomas W Develop cultiva... Identification Personal Visit
Planned /12012 Michael ZieglerW§ Ask [over dinner] Negotiation Personal Visit
Planned 8/2/2012 Laura Murphy Jetermine ask... Identification Personal Visit
Planned 8/15/2012 Michael Ziegler entify primar... Negotiation Personal Visit
Planned Q/20/2012 Michael Ziegler Solicitation Perzonal Yisit
Planned 10/20/201 Michael Ziegler Megotiation Personal Visit
Planneds - . Michael Ziegler Solicitation Personal Visit
- r COMPLETED = 1 . a Laura Murphy . Negotiation Personal Visit |
Completed steps A ::)‘ ﬁ} Add step -
Status gDate Start time End time Owner Objective Contact method = Has document...

Completed

6/4/2012

Michael Ziegler

Update prospe... Identification

Personal Visit

So for the purposes of reporting, plan outlines and plan outline steps are not the a primary concern unless the
goal is to audit the plan outlines and plan outline steps. But the current plan stage as maintained in PROS—
PECTPLANSTATUSCODEID in PROSPECTPLAN and the stages associated with steps as maintained in PROS -
PECTPLANSTATUSCODEID In INTERACTION are useful for reporting on the transitions between stages.
INTERACTION contains all of the steps. To report on the transition between stages, INTERACT ION is the
table to query. But to report on the transition from the start of a plan to the current status, PROSPECTPLAN is
the table to query.

A constituent can be associated with more than one plan and more than one plan of a given type. Areport that
breaks out information by constituent and plan type must address that complication.

Later in the document, the core of our OLTP queries will use the PROSPECTPLAN, INTERACTION, and PROS—
PECTPLANSTATUSCODE tables as shown in the following database diagram created in SQL Server Man-
agement Studio.

FINDING THE DATA 23

INTERACTION

PROSPECTPLAN

g I
PROSPECTID
PROSPECTPLANTYPSCODELD

PRATMARYMANAGERFUNDRATSER .
SECOMDARYMANAGERRUINDRAL..

HARRATIVE

ISACTIVE

ADDEDEYID

CHANGEDEYID

DATEADDED

DATECHANGED

=

TELONG

HAME
PRIMARYMANAGERSTARTDATE
PRIMARYMANAGERENDDATE

SECONDARYMANAGERSTARTDA ..

SECOMDARY MANAGERENDDATE
PROSPECTPLANSTATUSCODED
BASEOURAENCYTD

STARTDATE

%
COMSTITUENTID
PROSPECTPLANID
FUNDRATSERTD
PLANOUTLINESTEPID
OBIECTIVE
INTERACTIONTYPECODELD
EXPECTEDDATE
ACTUALDWTE
DATE
PROSPECTPLANST ATUSCODELD
STATUSCODE
COMMENT
TSINTERACTION
ADDEDSYID
CHANGEDSYID
DATEADDED
DATECHANGED
TS
TSLONG
EVENTID
INTERACTIONSUECATEGDRYID
STATUS
COMPLETED
FUNDINGREQUESTID
FUNDINGREQUESTSTAGECODELD
FUNDINGREQUESTOUTLINESTERID
CUSTOMIDENTIFIER
SEQUENCEID
LOOKUPID
ISCONTACTREPORT
EXPECTEDSTARTTIME
EXPECTEDENDTIME
TSALLOWYEVENT
TIMEZDMEENTAYID
ACTUALSTARTTIME
ACTUALENDTIME
STARTTIME
ENDTIME
EXPECTEDSTARTDATETIME
EXPECTEDENDDATETIME
ACTUALSTARTDATETIME
ACTUALENDDATETIME

PROSPECTPLANSTATUSCODE

%

DESCATPFTION
ACTTVE
SEQUENCE
AWDDEDEYID
CHAMGEDSYID
DWTEADDED
DWTECHAMGED
Tz

TSLONG

24 CHAPTER 4

Finding Data in the Data Warehouse Database

Blackbaud Data Warehouse Tables and Major Giving Stages

A Blackbaud Data Warehouse database has these tables:

DIM INTERACTION: The Interaction dimension contains information about constituent interactions.
FACT INTERACTION: The Interaction fact relates information to constituent interactions.

DIM PROSPECTPLAN: Contains information about prospect plans.

DIM PROSPECTPLANSTATUS: Contains information about prospect plant status codes.

DIM INTERACTION includes these columns and mappings among others:
INTERACTIONSTATUSCODE: dbo. [INTERACTION] . [STATUSCODE]
INTERACTIONSTATUS:dbo. [INTERACTION] . [STATUS]
ISINTERACTIONCOMPLETED: dbo. [INTERACTION] . [COMPLETED]

FACT INTERACTION includes these columns and mappings among others:

CONSTITUENTDIMID: Reference key to the constituent dimension, derived from dbo. [INTER-
ACTION].[CONSTITUENTID]

CONSTITUENTSYSTEMID:dbo. [INTERACTION] . [CONSTITUENTID]

INTERACTIONDIMID: Reference key to the interaction dimension, derived from dbo. [INTER-
ACTION] . [INTERACTIONTYPECODEID],dbo. [INTERACTION].[INTER-
ACTIONSUBCATEGORYID],dbo. [INTERACTION] . [STATUSCODE],dbo. [INTERACTION] .
[ISALLDAYEVENT], dbo. [INTERACTION] . [ISINTERACTION], dbo. [INTERACTION] . [COM-
PLETED], and dbo. [INTERACTION] . [ISCONTACTREPORT]

PROSPECTPLANDIMI D: Reference key to the prospect plan dimension, derived from dbo. [INTER-
ACTION] . [PROSPECTPLANID]

PROSPECTPLANSTATUSDIMID: Reference key to the prospect plan status dimension, derived from
dbo. [INTERACTION] . [PROSPECTPLANSTATUSCODEID]

DIM PROSPECTPLAN includes these columns and mappings among others:
CONSTITUENTSYSTEMID: dbo. [PROSPECTPLAN] . [PROSPECTID]

CONSTITUENTDIMID: Reference key to the constituent dimension, derived from dbo. [PROS-
PECTPLAN] . [PROSPECTID]

PROSPECTSTATUS:dbo. [PROSPECTPLANSTATUSCODE] . [DESCRIPTION]
PROSPECTPLANSTATUS: dbo. [PROSPECTPLANSTATUSCODE] . [DESCRIPTION]
DIM PROSPECTPLANSTATUS includes these columns and mappings among others:

PROSPECTPLANSTATUSSYSTEMID: dbo. [PROSPECTPLANSTATUSCODE] . [ID]

FINDING THE DATA 25

PROSPECTPLANSTATUS:dbo. [PROSPECTPLANSTATUSCODE] . [DESCRIPTION]

Later in the document, the core of our first set of data warehouse queries willusethe DIM PROSPECTPLAN,
DIM INTERACTION, FACT INTERACTION, and DIM PROSPECTPLANSTATUS tables as shown in the fol-
lowing database diagram created in SQL Server Management Studio. Notice there are no foreign key rela-
tionships. This is a characteristic of the Blackbaud Data Warehouse data warehouse database. However, if you
look at the primary keys for each of the dimension tables, they correspond to columns in the fact table. The rela-
tionships exist. But the database is oblivious. Removing foreign keys creates a performance gain for the ware-
house.

DIM_PROSPECTPLANSTATUS (BBDW)

§ PROSPECTPLANSTATUSIIMID
FACT_INTERACTION (BBDW) s
o e e = PROSPECTRLANSTATLS
e PROSPECTPLANISACTIVE
CONSTITUSNTOIMID Dl
P i e ETLCONTROLID
FUNDRAISERDIMID SHmCIIMD
FUNDRAISERSYSTEMID
INTERACTIONDATEDIMID
DIM_INTERACTION (BBDW) a5
§ INTERACTIONDIMID Ll AR i
TNTERACTIONSUBCATEGORYSYSTE . CUENITTRATDY DIM_PROSPECTPLAN (BEDW)
INTERACTIONSUBCATEGORY PO 1 ANMID § PROSECTRLANIINID
INTERACTIONCATEGORY P ANCUTTETHESTERV AT PRIOSPECTRLANSSTEMID
INTERACTIONTYPECO0ESY STEMID de il b e CONSTITUBNTSYSTEMID
INTERACTIONTYPE AHDNCRTNLES TN COMSTITUENTIIMID
P et FUNDINGREUESTOUTLINESTEPDIMID RTETIE
INTERACTIONSTATLS IHNTERACTIONL OO AESEARCHSTATUSCONFIRMED
TSALLDAYEVENT B T PROSPECTPLANMAME
ISCONTACTREPORT EHCILYET) PROSPECTPLANSTATLS
TEINTERACTION ERTONTRMTD PROSPECTRLANTYRE
TSINTERACTIONCOMPLETED SOLRER M PROSPECTMANAGERFUNDRATSERDIMID
ISNOLUDED PRTMARYFUNDRAISERDIMID
ETLCONTRAOLID SECONDARYFUNDRATSERDIMID
SOURCEDIMID PRIMARYFUNDRALSERSTARTDATE
PRIMARYFUNDRAISERSTARTOATEDIMID
PRIMARYFUNDRAISERENDOATE
PRIMARYFUNDRAISERENDOATECIMID
SECONDARTFUNDRAISERSTARTATE
SECONDARYFLNDRATSERSTARTIWTEDL .
SECONDARYFUNDRATSERENDOATE
SECONDARTFUNDR ATSERENDDATEDMID
HARRATIVE
PROSPECTPLANIZACTIVE
ISINCLUDED
ETLCONTROLID
SOURCEDIMID

26 CHAPTER 4

Blackbaud Data Warehouse Views and Major Giving Stages

Warning: Prospect Plan Stage (PROSPECTPLANSTATUSCODE) information is not a part of these views.

A Blackbaud Data Warehouse database has these views:
v DIM INTERACTION: The interaction dimension contains information about interactions.

v FACT INTERACTION: Theinteraction fact table contains information about constituent inter-
actions.

v_DIM INTERACTION includes these columns and mappings among others:
INTERACTIONSTATUSCODE: BBDW. [DIM INTERACTION] . [INTERACTIONSTATUSCODE]
INTERACTIONSTATUS: BBDW. [DIM INTERACTION] .[INTERACTIONSTATUS]

ISINTERACTIONCOMPLETED: BBDW. [DIM INTERACTION].[ISINTER-
ACTIONCOMPLETED]

v_FACT INTERACTION includes these columnsand mappings among others:
CONSTITUENTDIMID: BBDW. [FACT INTERACTION].[CONSTITUENTDIMID]
CONSTITUENTSYSTEMID:BBDW.[FACT_INTERACTION].[CONSTITUENTSYSTEMID]

INTERACTIONDIMID: BBDW. [FACT INTERACTION] .[INTERACTIONDIMID]

Code Formatting

For the Transact-SQL samples in this documentation, we will follow these guidelines.
e Enter Transact-SQL keywords in lower-case.
e Begin a custom stored procedure name with USR_ USP .

e When coding a JOIN, use a fully qualified name for fields such as TABLENAME . FTELDNAME instead of
FIELDNAME.

¢ Indent the code.

FINDING THE DATA 27

Creating an OLTP Version

A Report Which Queries the Blackbaud CRM OLTP Database

For information about reports in Blackbaud CRM, see Reports Guide. For more information about creating reports for Blackbaud CRM, see Infinity
Reports.

In many cases, you will get better performance from your reports if you report off of the data warehouse database. But we are going to compare a report
off of the OLTP database with reports off of the data warehouse. So we will build both kinds.

Begin by creating a Report Spec. Once loaded, the Report Spec will connect the report to the application interface. For information about how to create a
Report Spec, see Create a Report Spec on page 141.

Use SQL Server Business Intelligence Development Studio (Visual Studio 2008) to create the project because there is an editor for RDL files.

Logic

Here is a query which returns the stage description (Identification, Cultivation, Negotiation, Solicitation, etc.), the prospect plan name, and the actual
start datetime for completed plan steps (interaction records). The query presents the results in order by prospect plan name and, within the prospect
plan name, by actual start datetime.

select PROSPECTPLANSTATUSCODE. [DESCRIPTION],
PROSPECTPLAN. [NAME],
INTERACTION. [ACTUALSTARTDATETIME]
from INTERACTION
inner join PROSPECTPLANSTATUSCODE on INTERACTION.[PROSPECTPLANSTATUSCODEID] = PROSPECTPLANSTATUSCODE. [ID]
inner join PROSPECTPLAN on INTERACTION.[PROSPECTPLANID] = PROSPECTPLAN. [ID]
where (INTERACTION.[COMPLETED] = 1)
group by PROSPECTPLANSTATUSCODE. [DESCRIPTION],
INTERACTION. [ACTUALSTARTDATETIME],
PROSPECTPLAN. [NAME]
order by PROSPECTPLAN. [NAME],
INTERACTION. [ACTUALSTARTDATETIME]

https://www.blackbaud.com/files/support/guides/enterprise/reports.pdf
https://www.blackbaud.com/files/support/guides/enterprise/reports.pdf
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/infrep-developer-help/Content/InfinityReports/WelcomeInfinityReports.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/infrep-developer-help/Content/InfinityReports/WelcomeInfinityReports.htm

28 CHAPTER 4

This gives us a starting place for the problem. If we create a plan in Blackbaud CRM called Test and enter the example steps from the design, the query
returns these rows:

DESCRIPTION | NAME | ACTUALSTARTDATETIME

Identification |Test |06/05/2012 5:00:00 PM
Identification [Test |[06/06/2012 6:15:00 PM
Cultivation Test |06/09/2012 3:30:00 PM
Identification [Test [06/11/2012 6:30:00 AM
Cultivation Test |06/17/2012 12:05:00 PM
Cultivation Test |06/21/2012 12:00:00 AM
Solicitation Test |06/22/2012 12:00:00 AM

If there were other prospect plans, there would be rows for those as well. But the results would be grouped by prospect plan name.

For each prospect plan, we want to identify the first instance of consecutive occurrences of a stage description in these results. Those rows will give us
much of what we need to address the consecutive and nonconsecutive perspectives.

DESCRIPTION [NAME | ACTUALSTARTDATETIME
Identification|Test |06/05/2012 5:00:00 PM
Identification [Test |06/06/2012 6:15:00 PM
Cultivation ([Test |06/09/2012 3:30:00 PM
Identification |Test |06/11/2012 6:30:00 AM
Cultivation |[Test |06/17/2012 12:05:00 PM
Cultivation Test |06/21/2012 12:00:00 AM
Solicitation |Test |06/22/2012 12:00:00 AM

For each prospect plan, we want to identify the first instance of a stage description in these results. Those rows will give us much of what we need to
address the overlapping perspective. For example:

FINDING THE DATA 29

DESCRIPTION

NAME [ACTUALSTARTDATETIME

Identification

Test |06/05/2012 5:00:00 PM

Identification

Test [06/06/2012 6:15:00 PM

Cultivation

Test |06/09/2012 3:30:00 PM

Identification

Test [06/11/2012 6:30:00 AM

Cultivation Test 06/17/2012 12:05:00 PM
Cultivation Test 06/21/2012 12:00:00 AM
Solicitation |[Test |(06/22/2012 12:00:00 AM

The difference is that with the overlapping perspective, we are not concerned with when a new set of consecutive occurrences of a stage appear. In the
consecutive and nonconsecutive perspectives, we need to identify occurrences of consecutive stage descriptions. In the overlapping perspective, we
need to identify only the first occurrence of a stage description. But it turns out that we need information from adjacent rows to complete the picture.

For the first stage occurrence, the start time is also the start time of the first step in the plan. The end time is the end time of the last step in the occur-
rence. When there is a subsequent stage occurrence, the end datetime is the same as the start datetime of the first step in the subsequent occurrence.
When there is no subsequent stage occurrence, the end datetime is the end datetime of the plan, which is the same as the end datetime of the last step
in the stage occurrence. Since we are paring down rows to represent either a stage in the case of the overlapping perspective or a stage occurrence in the
other perspectives, we need to pick which rows.

We will hold on to the last row of each occurrence or stage. For the overlapping perspective, we have what we need in those rows with the exception
of the start datetime of the plan and the end datetime of the plan. We can use MIN and MAX partitioned by plan and status code to find the results we

need.

select i.[PROSPECTPLANSTATUSCODEID],
i. [ACTUALENDDATETIME],
min (i. [ACTUALSTARTDATETIME]) over (
partition by i.[PROSPECTPLANID],
i. [PROSPECTPLANSTATUSCODEID]
) as [FIRSTSTEPINSTAGEDATETIME],
max (i.[ACTUALENDDATETIME]) over (
partition by i.[PROSPECTPLANID],
i. [PROSPECTPLANSTATUSCODEID]
) as [LASTSTEPINSTAGEDATETIME]
from [INTERACTION] as i
where i.[COMPLETED] = 1

30 CHAPTER 4

Forthe Test plan data (ID85EEC8-5205-4205-A5D6-9A31F4C78EAS is the ID for Test):

PROSPECTPLANSTATUSCODEID

ACTUALENDDATETIME

FIRSTSTEPINSTAGEDATETIME

LASTSTEPINSTAGEDATETIME

1D85EEC8-5205-4205-A5D6-9A31FAC78EAS

2012-06-05 18:30:00.000

2012-06-05 17:00:00.000

2012-06-11 09:51:00.000

1D85EEC8-5205-4205-A5D6-9A31F4C78EAS 2012-06-06 19:29:00.000 2012-06-05 17:00:00.000 2012-06-11 09:51:00.000
1D85EEC8-5205-4205-A5D6-9A31F4C78EAS 2012-06-11 09:51:00.000 2012-06-05 17:00:00.000 2012-06-11 09:51:00.000
038E8841-E30B-4B32-A621-E986D75FAAF5 2012-06-22 00:00:00.000 2012-06-22 00:00:00.000 2012-06-22 00:00:00.000

3EFOAE1D-7F63-4471-BB63-EFOACFEF168A

2012-06-17 12:58:00.000

2012-06-09 15:30:00.000

2012-06-21 00:00:00.000

3EFOAE1D-7F63-4471-BB63-EFOACFEF168A

2012-06-21 00:00:00.000

2012-06-09 15:30:00.000

2012-06-21 00:00:00.000

3EFOAE1D-7F63-4471-BB63-EFOACFEF168A

2012-06-09 16:58:00.000

2012-06-09 15:30:00.000

2012-06-21 00:00:00.000

We are going use aggregate calculations with these rows. We can set up a common table expression and select from that.

with [STEPS]
as

(

)
select *
from [STEPS] as s

This returns the same results. We want the friendly name for the stage rather than the GUTD. So we willuse TNNER JOTIN to get the prospect plan
status code description from the PROSPECTPLANSTATUSCODE code table.

FINDING THE DATA 31

from [STEPS] as s
inner join [PROSPECTPLANSTATUSCODE] as p on s.[PROSPECTPLANSTATUSCODEID] = p.[ID]

We also want to reduce the rows to only the last row in a stage. Also, we are going to include the stage description. So we will GROUP BY that.

where (s.[ACTUALENDDATETIME] = s.[LASTSTEPINSTAGEDATETIME])
group by p.[DESCRIPTION]

For every stage in a plan, we now have the stage description, start datetime, and end datetime. We can use the datetimes to calculate a duration and find
the average, minimum, and maximum of those durations.

p.[DESCRIPTION] as [STAGENAME],

avg (cast ((s. [LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [AVGSTAGEDURATION],
min (cast ((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MINSTAGEDURATION],
max (cast ((s. [LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MAXSTAGEDURATION]

STAGENAME AVGSTAGEDURATION MINSTAGEDURATION MAXSTAGEDURATION
Cultivation 11.3541666666667 11.3541666666667 11.3541666666667
Identification 5.70208333333333 5.70208333333333 5.70208333333333
Solicitation 0 0 0

32 CHAPTER 4

For the full CREATE PROCEDURE code to be used in the Report Spec, see Overlapping Perspective Stored Procedure on page 38.

Now we have our overlapping perspective. The consecutive and nonconsecutive perspectives are more complex. The reason is those perspectives look at
stage occurrences rather than just stages. A plan can go back and forth between stages. So there can be more than one stage occurrence for a given
stage. For example, the plan can move from Identification to Solicitation and back to Identification. We can't partition this effectively in one query. To
overcome that, we can use row comparisons. To perform row comparisons, we join a table to itself on a sequence. But we stagger the sequence.

We are still going to use a common table expression. But we maintain some additional information and create a sequence number for the steps. To create
a sequence number, we use the ROW NUMBER function. We also maintain the start time, prospect plan ID, and prospect plan status ID. We will discuss
the parameter @PROSPECTPLANTYPECODEID in another section.

with [STEPS]
as (
select row number () over (
order by i.[PROSPECTPLANID],
i. [ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],
i. [ACTUALSTARTDATETIME],
i.[ACTUALENDDATETIME],
i. [PROSPECTPLANID],
max (i.[ACTUALENDDATETIME]) over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i. [PROSPECTPLANSTATUSCODEID]
from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl. [ID]
where i.[COMPLETED] = 1
and pl.[PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
)y
For the Test data:
ALL- FIRST- LAST- PROS-
STEP ACTU- ACTU- PROS- STE STE PECT
ALSTARTDATETIME |ALENDDATETIME |PECTPLANID
SEQUENCENUMBER PINPLANDATETIME PINPLANDATETIME |PLANSTATUSCODEID
5F14DA30-
1 2012-06-05 2012-06-05 E8E7-49D7- 2012-06-05 2012-06-22 1D85EEC8-5205-4205-
17:00:00.000 18:30:00.000 BF41- 17:00:00.000 00:00:00.000 A5D6-9A31F4C78EAS
3ABA267B3F2-

FINDING THE DATA 33

SEQUENCENUMBER e EAEIDAIENIVE) (ALENDDITENINEY BECTRLAID PINPLANDATETIME PINPLANDATETIME PLANSTATUSCODEID
0
5F14DA30-
) 2012-06-06 2012-06-06 ESFE71—_49D7- 2012-06-05 2012-06-22 1D85EEC8-5205-4205-
18:15:00.000 19:29:00.000 3ABA267B3F2- 17:00:00.000 00:00:00.000 A5D6-9A31F4C78EAS
0
5F14DA30-
: 020609 0206 gy 00608 oo SO TR T
0
5F14DA30-
4 2012-06-11 2012-06-11 Eii71149D7- 2012-06-05 2012-06-22 1D85EEC8-5205-4205-
06:30:00.000 09:51:00.000 3ABA267B3F2- 17:00:00.000 00:00:00.000 A5D6-9A31F4C78EAS
0
5F14DA30-
; W06ty o0y g 00608 e SO TR T
0
5F14DA30-
6 2012-06-21 2012-06-21 Eii71149D7- 2012-06-05 2012-06-22 3EFOAE1D-7F63-4471-
00:00:00.000 00:00:00.000 3ABA267B3F2- 17:00:00.000 00:00:00.000 BB63-EF9ACFEF168A

0

34 CHAPTER 4

SEQUENCENUMBER ALSTARTDATETIME | ALENDDATETIME | PECTPLANID PINPLANDATETIME PINPLANDATETIME |PLANSTATUSCODEID
5F14DA30-
7 2012-06-22 2012-06-22 Eii71149D7_ 2012-06-05 2012-06-22 038E8841-E30B-4B32-
00:00:00.000 00:00:00.000 3ABA267B3F2- 17:00:00.000 00:00:00.000 A621-E986D75FAAF5
0

We want to grab some information from the preceding rows before we filter and create granularities for the other two perspectives. In particular, we want
the prospect plan ID and prospect plan status of the preceding steps:

[STAGEOCCURRENCESFIRSTPASS]
as (
select s.[ACTUALSTARTDATETIME],
. [ACTUALENDDATETIME],
. [PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
. [PROSPECTPLANSTATUSCODEID],
. [PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
. [PROSPECTPLANID],
. [LASTSTEPINPLANENDDATETIME]
from [STEPS] as s
left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.[ALLSTEPSEQUENCENUMBER]
) s

n 0 8 O B8 0

For the consecutive perspective, the [STEPS] granularity is used to createa [STAGEOCCURRENCES] granularity which is used by the [STAGE -
DURATIONS] common table expression:

[STAGEOCCURRENCES]
as (
select row number () over (
order by sofp.[PROSPECTPLANID],
sofp. [ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],
sofp. [ACTUALSTARTDATETIME],
sofp. [ACTUALENDDATETIME],
sofp. [LASTSTEPINPLANENDDATETIME],
sofp. [PROSPECTPLANID],

FINDING THE DATA 35

sofp. [PROSPECTPLANSTATUSCODEID]
from [STAGEOCCURRENCESFIRSTPASS] as sofp
where sofp. [PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]
or (
(sofp. [PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)
)I
[STAGEOCCURRENCEDURATIONS]
as (
select sol.[ACTUALSTARTDATETIME] as [STARTDATETIME],
sol. [ACTUALENDDATETIME] as [ENDDATETIME],
"STAGEOCCURRENCEDURATION" = case
when sol.[ACTUALENDDATETIME] <> sol.[LASTSTEPINPLANENDDATETIME]
then cast (so2.[ACTUALSTARTDATETIME] - sol.[ACTUALSTARTDATETIME] as float)
when sol. [ACTUALENDDATETIME] = sol.[LASTSTEPINPLANENDDATETIME]
then cast (sol. [ACTUALENDDATETIME] - sol.[ACTUALSTARTDATETIME] as float)
end,
sol. [PROSPECTPLANID],
sol. [PROSPECTPLANSTATUSCODEID]
from [STAGEOCCURRENCES] as sol
left join [STAGEOCCURRENCES] as so2 on sol.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so2.A-
LLSTAGEOCCURRENCESSEQUENCENUMBER
)

The information gleaned from the row comparison is used to filter out unneeded rows in order to establish the new granularity of stage occurrence. So
rather than discrete steps in a plan, the rows represent unbroken periods of time in a particular plan stage.

where sofp.[PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]
or (
(sofp. [PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)

In [STAGEOCCURRENCEDURATIONS] information from the next row for a stage occurrence is used to calculate stage occurrence durations. The case
statement determines qualities about the stage occurrence represented by the row and bases the duration calculation on those qualities.

"STAGEOCCURRENCEDURATION" = case
when sol.[ACTUALENDDATETIME] <> sol.[LASTSTEPINPLANENDDATETIME]
then cast (so2. [ACTUALSTARTDATETIME] - sol.[ACTUALSTARTDATETIME] as float)
when sol.[ACTUALENDDATETIME] = sol.[LASTSTEPINPLANENDDATETIME]

36 CHAPTER 4

then cast (sol. [ACTUALENDDATETIME] - sol.[ACTUALSTARTDATETIME] as float)
end,
DESCRIPTION |AVGSTAGEOCCURRENCEDURATION |MINSTAGEOCCURRENCEDURATION [MAXSTAGEOCCURRENCEDURATION |AVGTIMESINSTAGE
Cultivation 3.06076388888389 1.625 4,49652777777778 2
Identification |6.23263888383889 6.232638383888889 6.23263888888889 1
Solicitation 0 0 0 1

Notice that for the original sequence number (ALLSTEPSEQUENCENUMBER), we decremented the row in the comparison and for the second one (ALL-
STAGEOCCURRENCESSEQUENCENUMBER), we incremented the row. We used ALLSTAGEOCCURRENCESSEQUENCENUMBER to create a join to
compare the subsequent row, we willuse ALTL.STEPSEQUENCENUMBER to compare the preceding row. But also notice that when we decremented, we
made this provision:.

where sofp.[PROSPECTPLANID]
or (

<> sofp. [PREVIOUSSTEPPROSPECTPLANID]

(sofp. [PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)

The calculation of average, minimum, maximum, and average count of occurrences is performed in a similar way as the overlapping perspective. But the
average times here are for stage occurrence durations not stage durations. Also, there is an extra calculation for average times in stage.

select p.[DESCRIPTION] as [STAGENAME],

avg (cast ([STAGEOCCURRENCEDURATIONS] . [STAGEOCCURRENCEDURATION] as float)) as [AVGSTAGEOCCURRENCEDURATION],
min (cast ([STAGEOCCURRENCEDURATIONS] . [STAGEOCCURRENCEDURATION] as float)) as [MINSTAGEOCCURRENCEDURATION],
max (cast ([STAGEOCCURRENCEDURATIONS] . [STAGEOCCURRENCEDURATION] as float)) as [MAXSTAGEOCCURRENCEDURATION],

cast (count ([STAGEOCCURRENCEDURATIONS] . [PROSPECTPLANID])
[PROSPECTPLANID])) as float) as [AVGTIMESINSTAGE]
[STAGEOCCURRENCEDURATIONS]
inner join [PROSPECTPLANSTATUSCODE]
group by p.[DESCRIPTION]

as float) / cast(count (distinct ([STAGEOCCURRENCEDURATIONS].

from

as p on [STAGEOCCURRENCEDURATIONS] .[PROSPECTPLANSTATUSCODEID] = p.[ID]

It is tempting to find the average number of times in a stage using the AVG function on a count created in the previous granularity. But remember there is
a row for each stage occurrence. So the average would be weighted. This average calculation avoids that:

cast (count ([STAGEOCCURRENCEDURATIONS] . [PROSPECTPLANID]) as float) /

cast (count (distinct ([STAGEOCCURRENCEDURATIONS] . [PROSPECTPLANID])) as float) as [AVGTIMESINSTAGE]

Forthe full CREATE PROCEDURE code to be used in the Report Spec, see Consecutive Perspective Stored Procedure on page 39.

FINDING THE DATA 37

The main difference between the consecutive and nonconsecutive perspective is the totaling of the stage occurrence times. We add another layer of gran-
ularity for durations and total the durations each stage occurrence.

[STAGEDURATIONS]
as (
select sum(cast (sod. [STAGEOCCURRENCEDURATION] as float)) over (
partition by sod.[PROSPECTPLANID],
sod. [PROSPECTPLANSTATUSCODEID]
) as [STAGEDURATION],
RANK () over (
partition by sod.[PROSPECTPLANID],
sod. [PROSPECTPLANSTATUSCODEID] order by sod. [ACTUALSTARTDATETIME]
) as [FIRSTOCCURRENCEROWINSTAGE],
sod. [PROSPECTPLANSTATUSCODEID]
from [STAGEOCCURRENCEDURATIONS] as sod

)
The average count of times in stage is not necessary for the nonconsecutive perspective:

select p.[DESCRIPTION] as [STAGENAME],
avg (cast ([STAGEDURATIONS] . [STAGEDURATION] as float)) as [AVGSTAGEDURATION],
min (cast ([STAGEDURATIONS] . [STAGEDURATION] as float)) as [MINSTAGEDURATION],
max (cast ([STAGEDURATIONS] . [STAGEDURATION] as float)) as [MAXSTAGEDURATION]
from [STAGEDURATIONS]
inner join [PROSPECTPLANSTATUSCODE] as p on [STAGEDURATIONS].[PROSPECTPLANSTATUSCODEID] = p.[ID]
where [FIRSTOCCURRENCEROWINSTAGE] = 1
group by p.[DESCRIPTION]

For the full CREATE PROCEDURE code to be used in the Report Spec, see Nonconsecutive Perspective Stored Procedure on page 41.

38 CHAPTER 4

Overlapping Perspective Stored Procedure

create procedure dbo.USR USP REPORT PLANSTAGEDURATIONSOVERLAPPING (@PROSPECTPLANTYPECODEID uniqueidentifier)
as
with [STEPS]
as (
select i.[PROSPECTPLANSTATUSCODEID],
i. [ACTUALENDDATETIME],
min (i. [ACTUALSTARTDATETIME]) over (
partition by i.[PROSPECTPLANID],
i. [PROSPECTPLANSTATUSCODEID]
) as [FIRSTSTEPINSTAGEDATETIME],
max (i.[ACTUALENDDATETIME]) over (
partition by i.[PROSPECTPLANID],
i. [PROSPECTPLANSTATUSCODEID]
) as [LASTSTEPINSTAGEDATETIME]
from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1
and pl. [PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
)
select p.[DESCRIPTION] as [STAGENAME],
avg (cast ((s. [LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [AVGSTAGEDURATION],
min(cast ((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MINSTAGEDURATION],
max (cast ((s. [LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MAXSTAGEDURATION]
from [STEPS] as s
inner join [PROSPECTPLANSTATUSCODE] as p on s.[PROSPECTPLANSTATUSCODEID] = p.[ID]
where (s.[ACTUALENDDATETIME] = s.[LASTSTEPINSTAGEDATETIME])
group by p.[DESCRIPTION]

FINDING THE DATA 39

Consecutive Perspective Stored Procedure

create procedure dbo.USR USP REPORT PLANSTAGEDURATIONSCONSECUTIVE (@PROSPECTPLANTYPECODEID uniqueidentifier)

as
with [STEPS]
as (
select row number () over (
order by i.[PROSPECTPLANID],
i. [ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],
i.[ACTUALSTARTDATETIME],
i. [ACTUALENDDATETIME],
i.[PROSPECTPLANID],
max (i.[ACTUALENDDATETIME]) over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i. [PROSPECTPLANSTATUSCODEID]
from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1
and pl.[PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
) s
[STAGEOCCURRENCESFIRSTPASS]
as (
select s.[ACTUALSTARTDATETIME],
s. [ACTUALENDDATETIME],
r. [PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
s. [PROSPECTPLANSTATUSCODEID],
r. [PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
s. [PROSPECTPLANID],
s. [LASTSTEPINPLANENDDATETIME]
from [STEPS] as s
left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.[ALLSTEPSEQUENCENUMBER]
) s
[STAGEOCCURRENCES]
as (
select row number () over (
order by sofp.[PROSPECTPLANID],
sofp. [ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],
sofp. [ACTUALSTARTDATETIME],

40 CHAPTER 4

sofp. [ACTUALENDDATETIME],
sofp. [LASTSTEPINPLANENDDATETIME],
sofp. [PROSPECTPLANID],
sofp. [PROSPECTPLANSTATUSCODEID]
from [STAGEOCCURRENCESFIRSTPASS] as sofp
where sofp.[PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]
or (
(sofp. [PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])

)
)l
[STAGEOCCURRENCEDURATIONS]
as (
select sol.[ACTUALSTARTDATETIME] as [STARTDATETIME],
sol. [ACTUALENDDATETIME] as [ENDDATETIME],
"STAGEOCCURRENCEDURATION" = case
when sol. [ACTUALENDDATETIME] <> sol.[LASTSTEPINPLANENDDATETIME]
then cast (so2. [ACTUALSTARTDATETIME] - sol.[ACTUALSTARTDATETIME] as float)
when sol. [ACTUALENDDATETIME] = sol.[LASTSTEPINPLANENDDATETIME]
then cast (sol.[ACTUALENDDATETIME] - sol.[ACTUALSTARTDATETIME] as float)
end,
sol. [PROSPECTPLANID],
sol. [PROSPECTPLANSTATUSCODEID]
from [STAGEOCCURRENCES] as sol
left join [STAGEOCCURRENCES] as so2 on sol.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so02.A-
LLSTAGEOCCURRENCESSEQUENCENUMBER

)
select p.[DESCRIPTION] as [STAGENAME],
avg (cast ([STAGEOCCURRENCEDURATIONS] STAGEOCCURRENCEDURATION] as float)) as [AVGSTAGEOCCURRENCEDURATION],

-l
min (cast ([STAGEOCCURRENCEDURATIONS] . [STAGEOCCURRENCEDURATION] as float)) as [MINSTAGEOCCURRENCEDURATION],
max (cast ([STAGEOCCURRENCEDURATIONS] . [STAGEOCCURRENCEDURATION] as float)) as [MAXSTAGEOCCURRENCEDURATION],
cast (count ([STAGEOCCURRENCEDURATIONS] . [PROSPECTPLANID]) as float) / cast(count (distinct ([STAGEOCCURRENCEDURATIONS] .
[PROSPECTPLANID])) as float) as [AVGTIMESINSTAGE]
from [STAGEOCCURRENCEDURATIONS]
inner join [PROSPECTPLANSTATUSCODE] as p on [STAGEOCCURRENCEDURATIONS].[PROSPECTPLANSTATUSCODEID] = p.[ID]

group by p.[DESCRIPTION]

FINDING THE DATA 41

Nonconsecutive Perspective Stored Procedure

create procedure dbo.USR USP REPORT PLANSTAGEDURATIONSNONCONSECUTIVE (@PROSPECTPLANTYPECODEID uniqueidentifier)

as
with [STEPS]
as (
select row number () over (
order by i.[PROSPECTPLANID],
i. [ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],
i.[ACTUALSTARTDATETIME],
i.[ACTUALENDDATETIME],
i. [PROSPECTPLANID],
max (i.[ACTUALENDDATETIME]) over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i. [PROSPECTPLANSTATUSCODEID]
from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1
and pl.[PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
) s
[STAGEOCCURRENCESFIRSTPASS]

as (
select s.[ACTUALSTARTDATETIME],
s. [ACTUALENDDATETIME],
r. [PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
s. [PROSPECTPLANSTATUSCODEID],
r. [PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
s. [PROSPECTPLANID],
s. [LASTSTEPINPLANENDDATETIME]
from [STEPS] as s
left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.[ALLSTEPSEQUENCENUMBER]
) s
[STAGEOCCURRENCES]

as (
select row number () over (
order by sofp.[PROSPECTPLANID],
sofp. [ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],

sofp. [ACTUALSTARTDATETIME],

42 CHAPTER 4

sofp. [ACTUALENDDATETIME],
sofp. [LASTSTEPINPLANENDDATETIME],
sofp. [PROSPECTPLANID],
sofp. [PROSPECTPLANSTATUSCODEID]
from [STAGEOCCURRENCESFIRSTPASS] as sofp
where sofp.[PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]
or (
(sofp. [PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)
) 4
[STAGEOCCURRENCEDURATIONS]
as (
select sol.[ACTUALSTARTDATETIME],
sol. [ACTUALENDDATETIME],
"STAGEOCCURRENCEDURATION" = case
when sol. [ACTUALENDDATETIME] <> sol.[LASTSTEPINPLANENDDATETIME]
then cast (so2. [ACTUALSTARTDATETIME] - sol.[ACTUALSTARTDATETIME] as float)
when sol. [ACTUALENDDATETIME] = sol.[LASTSTEPINPLANENDDATETIME]
then CAST (sol.[ACTUALENDDATETIME] - sol.[ACTUALSTARTDATETIME] as float)
end,
sol. [PROSPECTPLANSTATUSCODEID],
sol. [PROSPECTPLANID]
from [STAGEOCCURRENCES] as sol
left join [STAGEOCCURRENCES] as so2 on sol.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so02.A-
LLSTAGEOCCURRENCESSEQUENCENUMBER
) 4
[STAGEDURATIONS]
as (
select sum(cast (sod. [STAGEOCCURRENCEDURATION] as float)) over (
partition by sod.[PROSPECTPLANID],
sod. [PROSPECTPLANSTATUSCODEID]
) as [STAGEDURATION],
RANK () over (
partition by sod.[PROSPECTPLANID],
sod. [PROSPECTPLANSTATUSCODEID] order by sod.[ACTUALSTARTDATETIME]
) as [FIRSTOCCURRENCEROWINSTAGE],
sod. [PROSPECTPLANSTATUSCODEID]
from [STAGEOCCURRENCEDURATIONS] as sod
)
select p.[DESCRIPTION] as [STAGENAME],

FINDING THE DATA 43

avg (cast ([STAGEDURATIONS] . [STAGEDURATION] as float)) as [AVGSTAGEDURATION],
min (cast ([STAGEDURATIONS] . [STAGEDURATION] as float)) as [MINSTAGEDURATION],
max (cast ([STAGEDURATIONS] . [STAGEDURATION] as float)) as [MAXSTAGEDURATION]

from [STAGEDURATIONS]
inner join [PROSPECTPLANSTATUSCODE] as p on [STAGEDURATIONS].[PROSPECTPLANSTATUSCODEID] = p.[ID]

where [FIRSTOCCURRENCEROWINSTAGE] = 1
group by p.[DESCRIPTION]

blackbaud

chapter 5
Wiring up the Report
TR e e I 1 iy
Create an RDL File . L 44
Create @ RepPoOrt SPeC .. il 54
Create a Page, Task, and Package ... oo o 65
Load the Packageo o 79

Within these topics we will look at how to create the report (RDL) file to use the query we created in Creating an
OLTP Version on page 27. We will create a Blackbaud Infinity Report Spec to reference the RDL file, a Page Spec to
define a page to display the report, and a Task Spec to define a link to appear in a functional area to open the
page that displays the report. We will also create a Package Spec to make it easier to add those items to the cat-
alog. Finally, we will load everything into the application and see the report displayed.

Create an RDL File

Note: These steps describe how to create the file and add the needed parameters, embedded data source, and
embedded data set for the OLTP version of the report. The steps are similar for the data warehouse versions.
But the stored procedures executed by the datasets in those versions are located in the data warehouse data-
base. However, the data warehouse versions still access the OLTP database to populate the available values for
the prospect plan type parameter. This could also be done from the data warehouse. But as of writing, that
would require an additional extension to the data warehouse.

1. Open Visual Studio 2008 with Business Intelligence Development Studio functionality installed.

For more information, see Microsoft's MSDN article at Introducing Business Intelligence Development Stu-
dio.

2. To create a new Report Server project, click File > New > Project. The New Project screen appears.

Otherwise skip this and the next step and open your existing Report Server project.

http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx

45 CHAPTER 5

- ———
Mew Project - ﬁ Lu
Project types: Templates: ’ MET Framework 3.5 "]

Business Intelligence Projects Visual Studio installed templates
Other Project Types 15 Analysis Services Project l’.@lmport Analysis Services Database
L Integration Services Connections Proje... @Integration Services Project I
a Report Server Project Wizard = Report Model Project
Eﬂ Report Server Project
My Templates |
i34 Search Online Templates...
[]
|
&l |
L
(]
Create an empty Report Server project. "
L
MName: Custom.Appr.PIanStageDurations.RDLI I
|
Location: Ch\Team_Projects\Documentation\ Technical_Training - Browse... 1
|
Solution Name: Custormn.AppFx.PlanStagelurations,RDL Create directory for solution
[7] Add to Source Control I
(]
|
i OK 1 [Cancel i
e - E '

3. Select the Report Server Project template from the Business Intelligence Projects type templates, enter a
name, and click OK. The new project appears.

4. From Solution Explorer, right-click Reports and select Add > New Item.

Solution Explorer
2

5] Custom.AppFx.PlanStageDurations.RDL
‘.. [Shared Data Sources

[Shared Datasets
03

| Add New Report
Add P] Mew fem.. L\@
Import Reports » | [2] I Existing ftern.:

Properties

WIRING UP THE REPORT 46

The Add New Item screen appears.

" ™
Add Mew Item - Custom.AppFx.PlanStageDurations.RDL — m
Categories: Templates:

Report Project Visual Studio installed templates
2 Report Wizard E Report
L} Data Source ElDataset

My Templates

i 5earch Online Templates...

Create a new empty report.

MName: PIanStageDurationsReporﬂ.rdl

| Add || Cancel

From Categories, select Report Project and from Templates select Report.

Enter a name and click Add.

The report appears in the designer.

3| Report Data ~ & X | PlanStageDurationsReport.rdl [Design] | Solution Explorer | -x

= | New ~ Edit.. X & 8 —
2 i : X ‘@ Design ;3, Preview

o

g -3 Built-in Fields
= : Parameters
{1 Images

[Data Sources

To add anitem tothe report: drag anitem from the Toolbox to the design surface, and then drag dataset fields to the item.

Connect the RDL to your Blackbaud Infinity OLTP database.

From the Report Data window, right-click Data Sources and select Add Data Source.

47 CHAPTER 5

10.
11.

12.

"Report Data s i
Mew ~ Edit...

-d Built-in Fields
L. Parameters

= Add Data Source... %JJ

The Data Source Properties screen appears. Enteraname suchas BBInfinity.

Select Embedded connection and from Type, select Microsoft SQL Server.
Click the Edit button next to Connection string. The Connection Properties screen appears.
From Server Name, select the name of the server which hosts your OLTP database.

From Connect to a database > Select or enter a database name, select the name of your OLTP database
suchas BBInfinity.

WIRING UP THE REPORT 48

~ =
Connection Properties e e M

Data source:

Server name:

Microsoft SQL Server (SglClient) Change...

Log on to the server

@ Use Windows Authentication
(7 Use SQL Server Authentication

MJHFXS5\M55QLSERVERZ2D02R - Refresh

|
Uzer name: [

Fazsword: |

[] Save my password

Connect to a database

@ Select or enter a database name:

BB Infinity
(") Attach 3 database file:

| || Browse... |

Logizal name;

13. Click OK. You return to the Data Source Properties screen.

49 CHAPTER 5

r ——

Data Source Properties "

Change name, type, and connection options.
Credentials

MName:

BEBInfinity

@ Embedded connection:

Type:
Microsoft SQL Server b]

Connection string:

.Data Source=MIHFXSSYWMS5QLSERVERZ008R; Initial Catalog=EBBInfinity

(") Use shared data source reference

HE

! w | Edit.

|:| Use single transaction when processing the queries

14. Click OK. The Data Source is added to the RDL file.

New - Edit.. X o« =
--rj Built-in Fields

----- [Parameters

EL-'_—} Data Sources

: 41 R BEInfinity

----- [Datasets

15. From Report Data, create a data set from your Blackbaud Infinity OLTP database. Right-click Datasets and
select Add Dataset. The Dataset Properties screen appears.

16. The goalis to create a dataset for each stored procedure in the report.

WIRING UP THE REPORT 50

17.

18.

19.

20.

21.

Enteranamesuchas USR USP REPORT PLANSTAGEDURATIONSCONSECUTIVE and select Use a
dataset embedded in my report.

From Data source, select the data source you created for the OLTP database.
From Query type, select Stored Procedure.

From Select or enter stored procedure name, select the name of the stored procedure in your Report
Spec.

Note: If you create the RDL file first, you can temporarily add the stored procedure to your development
database with SQL Server Management Studio. If you create the Report Spec first, you load the spec
with LoadSpec. This way when you select the stored procedure, the fields and parameters will be rec-
ognized by the dataset.

Click Refresh Fields. If the stored procedure exists in the database in your connection, the other tabs of
the Dataset Properties screen will be updated. This is easier than filling those out manually.

Open the Fields tab of the Dataset Properties screen and confirm the fields were found.

51 CHAPTER S

-

Dataset Properties

-.-.l‘ | W

{phions

Filters

Farameters

Change query and calculated fields.

S
[petete | [«][3]

Field Mame Field Source
STAGENAME STAGENAME
AVGSTAGEOCCURRENCEDURATION AVGSTAGEOCCURRENCEDURATION
MINSTAGEOCCURRENCEDURATION MINSTAGEOCCURRENCEDURATION
MAXSTAGEOCCURRENCEDURATION MAXSTAGEOCCURRENCEDURATION
AVGTIMESINSTAGE AVGTIMESINSTAGE

22. Click the Parameters tab of the Dataset Properties screen.

WIRING UP THE REPORT 52

23.

24,

25.

26.

-

Dataset Properties

I'\

Guery
Fields
{phions

Filters

Choose query parameter values.

Add | | Delete | & || #®
Parameter Mame Parameter Valus
@PROSPECTPLANTYPECODEID -

| ok

] [Cancel

There is no report parameter to map the dataset parameter to yet. Click OK. Visual Studio will probably

recognize the discrepancy and add the parameter. If not, right-click Parameters and add the PROS -
PECTPLANTYPECODEID parameter.

We need to populate the available values for the PROSPECTPLANTYPECODEID parameter. Add a new
dataset for that. Right-click Datasets and select Add Dataset.

For Name, enter ProspectPlanTypeCode.

Select User a dataset embedded in my report.

53 CHAPTER 5

27.

28.

29.

30.

31.

32.

33.

34.

35.

Select the OLTP data source you created.
Select Query type > Text.

In the Query field, enter:

select [ID], [DESCRIPTION] from [PROSPECTPLANTYPECODE]

Click OK.

Return to the Parameter Properties screen for the PROSPECTPLANTYPECODEID parameter.

From Available Values, select Get values from a query.
From Dataset, select ProspectPlanTypeCode.
From Value field, select ID.

From Label field, select DESCRIPTION.

-

Report Parameter Properties & .
General . .
Choose the available values for this parameter.
Default Values Select from one of the following options:
Advanced © None
(") Specify values
@ Getvalues from a query
Dataset:
[ProspectPlanTypelode -]
Value field:
= =
Label field:
| DESCRIPTION -
o) [o

36. Click OK.

WIRING UP THE REPORT 54

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49,

Return to the Parameters tab on the Dataset Properties screen for the stored procedure dataset.

You can now select a parameter value for the parameter. But click the function button next to the Param-
eter Value field. The Expression screen appears.

Enter this expression.

=Parameters!PROSPECTPLANTYPECODEID.Value
Click OK twice to exit those screens.
Right-click the PROSPECTPLANTYPECODEID parameter and select Parameter Properties.

Create datasets for the other two stored procedures:

USR _USP_REPORT PLANSTAGEDURATIONSNONCONSECUTIVE

USR_USP_REPORT_PLANSTAGEDURATIONSOVERLAPPING

Create a parameter for user ID. Right-click Parameters and select Add Parameter.

From Name, enter ALTREPORTUSERID and from Promptenter A1t Report UserID.
From the Default Values tab, select Specify values.

Click the function button next to the Value field. The Expression screen appears.

From the Set expression for: Value field, enter:

=User!UserID

Click OK twice.

Save the RDL file.

Create a Report Spec

1.

To create a new Catalog Project for Blackbaud Infinity development, from Visual Studio with the Black-
baud Infinity SDK installed, click File > New > Project. Then from the New Project screen, click Catalog
Project, enter a name and click OK. Otherwise, open your existing Catalog Project.

55 CHAPTER 5

-

Mew Project ? | 2
Recent Templates [.NI:—I' Framework 4 - l Sort by: [Default | Search Installed Templates p e |
Installed Templates T Visual Basi

, , OLAP Solution Visual Basic Wiy
4 Visual Basic A project for creating a Blackbaud AppFx
Windows server-side catalog assembly (.dll)
Web Cataleg Project Visual Basic
Office ey
Blackbaud AppFx g Integrated Workflow Project Wisual Basic
Cloud
Reporting Mobile Project Wisual Basic
SharePaoint
Sitverlight Parts Project Wisual Basic
Test
WCF EI Web API Client Template Visual Basic
Workflow
‘uf!sual G E Workflow Console Project Visual Basic
Visual C++
Visual F# | i i X .
: ' UI Model Project Visual Basic
Documentation
Other Project Types —
Database g Client Component Project Wisual Basic
Test Projects
Online Templates
Marne: Custom.Appr.PIanStageDurations.Catang
Location: C:-\Team_Pro-jects\Documentation\Tec.hnicaI;Traiﬁing ™
Selution name: Customn.AppFu.PlanStageDurations.Catalog || Create directory for solution
|| Add te source control

2. From the project node in the Solution Explorer, click Add > New Item.

el N NS Tl Source Control Explorer Pending Changes -...orkspace: MJHFX99 Output

= D E A
3 Solution 'Custom.AppFx.PlanStageDurations.Cataleg' (1 project)
4 |3 Custom.AppFx.PlanStageDurations.Cataloa |

=d| My Project Build

3 Images Rebuild

Q] Catalog.ruleset

Clean
Add * | Newltem.. Ctrl+Shift-+A
Add Reference.., [Bxisting fem... [Shift+Alt+A

3. From the Add New Item screen, click Installed Templates > Common Items > Blackbaud AppFx Catalog
> Report Spec.

WIRING UP THE REPORT 56

- - ~
Add New [tem - Custem.AppFePlanStageDurations.Catalog @lﬂ—ﬁJ
I
|
Installed Templates Sort by: [Default = A Search Installed Templates R |
4 Common Items 3 -
'iﬂ Type: C It
Code 1 Page Definition Spec Common Items IE UMM Teme
. Creates a spec for defining an report
Data =
General Ml Query View Spec (View) Commoen Ikems
Web -
Windows Forms I’,? Record Operation Spec (CLR) Commen ltems
Blackbaud AppFx Catalog L]
Blackbaud AppFx Client I‘ﬁ? Record Operation Spec (SP) Commeon Items
Blackbaud AppFx CMS i
Blackbaud AppFx Molile Iﬁ,? Record Operation Spec (Wrapped 5P) Commoen Items
Blackbaud AppFx OLAP 1)
Reporting ity el s g :
WorkHow .--:,-l = Relationship Map Spec ommon ftems
WPF = b
Y Report Spec Common Items
Online Templates
=l
E Search List Spec (CLR) Commeon Items ‘ ‘
@ Search List Spec (5P) Commeon Items i
|:E Simple Data List Spec (CLR) Common Items
I:E Simple Data List Spec (5P) Common Items
@ Smart Field Spec Common Items
E‘f Smart Query Spec Common ltems =
Mame: PlanStageDurationsOLTP Report
=

The Report Spec appears.

<ReportSpec
xmlns="bb appfx report"
xmlns:common="bb appfx commontypes"
ID="882fe807-2570-4900-9c89-0861070f7ea5"
Name="PlanStageDurationsOLTP Report"
Description:"REPLACE_WITH_DESCRIPTION"
Author="Blackbaud Product Development"
>

<RDLFileName>PlanStageDurationsOLTP.rd1</RDLFileName>
<Folder>System Reports/Misc Reports</Folder>

<DataRetrieval>
<CreateSQL ObjectName="dbo.USP_REPORT xxx" ObjectType="SQLStoredProc">
<! [CDATA[
create procedure dbo.USP REPORT xxx
(
<list any report parameters here>
)
as
<build the report SQL here>
11>
</CreateSQL>

57 CHAPTER S

</DataRetrieval>
</ReportSpec>
4. Adjust this information:
Name: Prospect Plan Stage Durations Report (OLTP Version)

Description: Displays the averages, minimums, and maximums of durations of
plan stages and stage occurrences. Also displays an average count of
stage occurrences.

Author: Technical Training

RDLFileName: Cus—
tom.AppFx.PlanStageDurations.Catalog.PlanStageDurationsReport.rdl

DataRetrieval: See the code sample at Report Spec for OLTP Version on page 59.

5. Save the Report Spec.

Note: At this point, if you attempt to run LoadSpec to test the spec, LoadSpec will throw an error
because the RDL file is not available. Message shown for a different version:

Connecting to database 'BBInfinity' on server 'MJHFX99\MSSQLSERVER2008R'.

Loading ...C:\Users\TomTr\Documents\Visual Studio 2010\Proje-

cts\M-
ajorGivingPlanStageDurations\MajorGivingPlanStageDurations\MajorGivingPlanStageDurations.Report.xml
Uploading ReportSpec 'Plan Stage Durations - Averages Report' to

catalog...

Uploading input file C:\Users\TomTr\Documents\Visual Studio 2010\Proje-

cts\M-
ajorGivingPlanStageDurations\MajorGivingPlanStageDurations\MajorGivingPlanStageDurations.Report.xml
Error.

The specified report definition, "C:\Users\TomTr\Documents\Visual Studio

2010\Proje-

cts\M-
ajorGivingPlanStageDurations\MajorGivingPlanStageDurations\MajorGivingPlanStageDurations.rdl"

could not be located.

Upload complete.

6. Add the RDL file created in Create an RDL File on page 44 to the project as an embedded resource. From
Solution Explorer, right-click the project and click Add > Existing Item.

33 Solution 'Custcum.Ap_pF_x._PIanﬁtage[_]_urations:Catalog' (1 project)
4 |2 Custom.AppFx.PlanStageDu-~+inn= £at=lnn

=d| My Project (5 Build

[Images Rebuild

éﬁ Catalog.ruleset Clean

(%] PlanStageDurationsOLTP,
Add P s Newltem.. Ctrl+Shift+ A
Add Reference... [l Existing em... N Shift+Alt+A
Add Seryice Reference, Foi Bleaw Faldar

7. Browse to the RDL file and click Add.

WIRING UP THE REPORT 58

.; Solution 'Custom.AppFx.PlanStagelurations, Catalog' (1 project)
4 |EEMomAEFx:Pl;rﬁtageﬁurﬂm&m |

[=d My Project

[Images

@ Catalog.ruleset

=] PlanStageDurationsOLTP xml

iﬂ Plan5tageDurationsReport.rdl

8. Right-click the RDL file and select Properties.
9. From Build Action, select Embedded Resource.

I; Solution 'Custom.AppFxPlanStageDurations. Catalog' (1 project)
4 %] Custom.AppFx.PlanStageDurations.Catalog
[=d| My Project
[Images Properties
|=]| Catalog.ruleset
|_;j PlanStageDurationsOLTP xml .
Gl PlanStageDurationsReport.rdl %E?

- E b 4
PlanStageDurationsReport.rdl File Properties

=

Build Action
Copy to OulMone
Custom To{Compile
Custom To{Content
4. Mis Embedded Resource
File Mame |[ApplicationDefinition

10. Savethe project.

As you update the RDL file in your Report Server project, you will have to update this version of the RDL.

You could alternately update this file from ReportBuilder 2.0, Business Intelligence Development Studio
outside of the context of the project, or with an XML editor.

59 CHAPTER 5

Report Spec for OLTP Version

Note: This version includes stored procedure parameters and UIModel items described elsewhere in the documentation.

<ReportSpec

xmlns="bb appfx report"

xmlns:common="bb appfx commontypes"

ID="882fe807-2570-4900-9c89-0861070f7ea5"

Name="Prospect Plan Stage Durations Report (OLTP Version)"

Description="Displays the averages, minimums, and maximums of durations of plan stages and stage occurrences. Also
displays an average count of stage occurrences."

Author="Technical Training"

>

<RDLFileName>Custom.AppFx.PlanStageDurations.Catalog.PlanStageDurationsReport.rdl</RDLFileName>

<Folder>Custom Reports/Misc Reports</Folder>

<DataRetrieval>
<CreateSQL ObjectName="dbo.USR USP REPORT PLANSTAGEDURATIONSOVERLAPPING" ObjectType="SQLStoredProc">

<! [CDATA[
create procedure dbo.USR USP REPORT PLANSTAGEDURATIONSOVERLAPPING (@PROSPECTPLANTYPECODEID uniqueidentifier)

as
with [STEPS]
as (
select i.[PROSPECTPLANSTATUSCODEID],
i.[ACTUALENDDATETIME],
min (i.[ACTUALSTARTDATETIME]) over (
partition by i.[PROSPECTPLANID],
i. [PROSPECTPLANSTATUSCODEID]
) as [FIRSTSTEPINSTAGEDATETIME],
max (i.[ACTUALENDDATETIME]) over (
partition by i.[PROSPECTPLANID],
i. [PROSPECTPLANSTATUSCODEID]
) as [LASTSTEPINSTAGEDATETIME]

from [INTERACTION] as i

[PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]

inner join
where i.[COMPLETED] = 1

and pl. [PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID

WIRING UP THE REPORT 60

select p.[DESCRIPTION] as [STAGENAME],
avg (cast ((s. [LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [AVGSTAGEDURATION],
min (cast ((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MINSTAGEDURATION],
max (cast ((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MAXSTAGEDURATION]
from [STEPS] as s
inner join [PROSPECTPLANSTATUSCODE] as p on s.[PROSPECTPLANSTATUSCODEID] = p.[ID]
where (s.[ACTUALENDDATETIME] = s.[LASTSTEPINSTAGEDATETIME])
group by p.[DESCRIPTION]
11>
</CreateSQL>

<CreateSQL ObjectName="dbo.USR USP REPORT PLANSTAGEDURATIONSCONSECUTIVE" ObjectType="SQLStoredProc">
<! [CDATA[
create procedure dbo.USR USP_REPORT PLANSTAGEDURATIONSCONSECUTIVE (QPROSPECTPLANTYPECODEID uniqueidentifier)
as
with [STEPS]
as (
select row number () over (
order by i.[PROSPECTPLANID],
i. [ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],
i. [ACTUALSTARTDATETIME],
i.[ACTUALENDDATETIME],
i. [PROSPECTPLANID],
max (1. [ACTUALENDDATETIME]) over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i. [PROSPECTPLANSTATUSCODEID]
from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1
and pl. [PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
)l
[STAGEOCCURRENCESFIRSTPASS]
as (
select s.[ACTUALSTARTDATETIME],
. [ACTUALENDDATETIME],
. [PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
. [PROSPECTPLANSTATUSCODEID],
. [PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
. [PROSPECTPLANID],
S. [LASTSTEPINPLANENDDATETIME]
from [STEPS] as s

n K 0O B ®

61 CHAPTER S

left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.[ALLSTEPSEQUENCENUMBER]

) s
[STAGEOCCURRENCES]
as (
select row number () over (
order by sofp.[PROSPECTPLANID],
sofp. [ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],
sofp. [ACTUALSTARTDATETIME],
sofp. [ACTUALENDDATETIME],
sofp. [LASTSTEPINPLANENDDATETIME],
sofp. [PROSPECTPLANID],
sofp. [PROSPECTPLANSTATUSCODEID]
from [STAGEOCCURRENCESFIRSTPASS] as sofp
where sofp. [PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]
or (
(sofp. [PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)
) r
[STAGEOCCURRENCEDURATIONS]
as (
select sol.[ACTUALSTARTDATETIME] as [STARTDATETIME],
sol. [ACTUALENDDATETIME] as [ENDDATETIME],
"STAGEOCCURRENCEDURATION" = case
when sol.[ACTUALENDDATETIME] <> sol.[LASTSTEPINPLANENDDATETIME]
then cast (so2.[ACTUALSTARTDATETIME] - sol.[ACTUALSTARTDATETIME] as float)
when sol. [ACTUALENDDATETIME] = sol.[LASTSTEPINPLANENDDATETIME]
then cast (sol. [ACTUALENDDATETIME] - sol.[ACTUALSTARTDATETIME] as float)
end,
sol. [PROSPECTPLANID],
sol. [PROSPECTPLANSTATUSCODEID]
from [STAGEOCCURRENCES] as sol
left join [STAGEOCCURRENCES] as so2 on sol.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so2.A-
LLSTAGEOCCURRENCESSEQUENCENUMBER

)
select p.[DESCRIPTION] as [STAGENAME],
avg (cast ([STAGEOCCURRENCEDURATIONS] . [STAGEOCCURRENCEDURATION] as float)) as [AVGSTAGEOCCURRENCEDURATION],
min (cast ([STAGEOCCURRENCEDURATIONS] . [STAGEOCCURRENCEDURATION] as float)) as [MINSTAGEOCCURRENCEDURATION],
max (cast ([STAGEOCCURRENCEDURATIONS] . [STAGEOCCURRENCEDURATION] as float)) as [MAXSTAGEOCCURRENCEDURATION],
cast (count ([STAGEOCCURRENCEDURATIONS] . [PROSPECTPLANID]) as float) / cast(count (distinct ([STAGEOCCURRENCEDURATIONS] .

WIRING UP THE REPORT 62

[PROSPECTPLANID])) as float) as [AVGTIMESINSTAGE]
from [STAGEOCCURRENCEDURATIONS]
inner join [PROSPECTPLANSTATUSCODE] as p on [STAGEOCCURRENCEDURATIONS].[PROSPECTPLANSTATUSCODEID] = p.[ID]
group by p.[DESCRIPTION]
11>
</CreateSQL>

<CreateSQL ObjectName="dbo.USR USP REPORT PLANSTAGEDURATIONSNONCONSECUTIVE" ObjectType="SQLStoredProc">
<! [CDATA[
create procedure dbo.USR USP_REPORT PLANSTAGEDURATIONSNONCONSECUTIVE (@PROSPECTPLANTYPECODEID uniqueidentifier)
as
with [STEPS]
as (
select row number () over (
order by i.[PROSPECTPLANID],
i. [ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],
i. [ACTUALSTARTDATETIME],
i.[ACTUALENDDATETIME],
i. [PROSPECTPLANID],
max (1. [ACTUALENDDATETIME]) over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i. [PROSPECTPLANSTATUSCODEID]
from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1
and pl. [PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
)l
[STAGEOCCURRENCESFIRSTPASS]
as (
select s.[ACTUALSTARTDATETIME],
. [ACTUALENDDATETIME],
. [PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
. [PROSPECTPLANSTATUSCODEID],
. [PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
. [PROSPECTPLANID],
S. [LASTSTEPINPLANENDDATETIME]
from [STEPS] as s
left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.[ALLSTEPSEQUENCENUMBER]
)l
[STAGEOCCURRENCES]
as (

n K 0O B ®

63 CHAPTER 5

select row number () over (
order by sofp.[PROSPECTPLANID],
sofp. [ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],
sofp. [ACTUALSTARTDATETIME],
sofp. [ACTUALENDDATETIME],
sofp. [LASTSTEPINPLANENDDATETIME],
sofp. [PROSPECTPLANID],
sofp. [PROSPECTPLANSTATUSCODEID]
from [STAGEOCCURRENCESFIRSTPASS] as sofp
where sofp. [PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]
or (
(sofp. [PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)
) r
[STAGEOCCURRENCEDURATIONS]
as (
select sol.[ACTUALSTARTDATETIME],
sol. [ACTUALENDDATETIME],
"STAGEOCCURRENCEDURATION" = case
when sol.[ACTUALENDDATETIME] <> sol.[LASTSTEPINPLANENDDATETIME]
then cast (so2.[ACTUALSTARTDATETIME] - sol.[ACTUALSTARTDATETIME] as float)
when sol. [ACTUALENDDATETIME] = sol.[LASTSTEPINPLANENDDATETIME]
then CAST (sol. [ACTUALENDDATETIME] - sol.[ACTUALSTARTDATETIME] as float)
end,
sol. [PROSPECTPLANSTATUSCODEID],
sol. [PROSPECTPLANID]
from [STAGEOCCURRENCES] as sol
left join [STAGEOCCURRENCES] as so2 on sol.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so2.A-
LLSTAGEOCCURRENCESSEQUENCENUMBER
) r
[STAGEDURATIONS]
as (
select sum(cast (sod. [STAGEOCCURRENCEDURATION] as float)) over (
partition by sod.[PROSPECTPLANID],
sod. [PROSPECTPLANSTATUSCODEID]
) as [STAGEDURATION],
RANK () over (
partition by sod.[PROSPECTPLANID],
sod. [PROSPECTPLANSTATUSCODEID] order by sod. [ACTUALSTARTDATETIME]

WIRING UP THE REPORT 64

) as [FIRSTOCCURRENCEROWINSTAGE],
sod. [PROSPECTPLANSTATUSCODEID]

from [STAGEOCCURRENCEDURATIONS] as sod

)
select p.[DESCRIPTION] as [STAGENAME],

avg (cast ([STAGEDURATIONS] . [STAGEDURATION] as float)) as [AVGSTAGEDURATION],

min (cast ([STAGEDURATIONS] . [STAGEDURATION] as float)) as [MINSTAGEDURATION],

max (cast ([STAGEDURATIONS] . [STAGEDURATION] as float)) as [MAXSTAGEDURATION]
from [STAGEDURATIONS]
inner join [PROSPECTPLANSTATUSCODE] as p on [STAGEDURATIONS] .[PROSPECTPLANSTATUSCODEID] = p.[ID]
where [FIRSTOCCURRENCEROWINSTAGE] = 1
group by p.[DESCRIPTION]

11>

</CreateSQL>
</DataRetrieval>

<common:FormMetaData>
<common:FormFields>
<common:FormField DataType="Guid" FieldID="PROSPECTPLANTYPECODEID" Caption="Prospect Plan Type Code"
Required="true">
<common : CodeTable CodeTableName="PROSPECTPLANTYPECODE" />
</common: FormField>
</common:FormFields>

<common : WebUIComponent>
<common:UIModel AssemblyName="Custom.AppFx.PlanStageDurations.UIModel.dl1" Class-

Name="C-
ustom.AppFx.PlanStageDurations.UIModel.ProspectPlanStatusDurations.ProspectPlanStageDurationsReportOLTPVersionUIModel"

/>
<common : WebUI>
<common:ExternalResource Url="browser/htmlforms/ProspectPlanStageDurationsReportOLTPVersion.html" />

</common : WebUI>
</common : WebUIComponent>

</common : FormMetaData>

65 CHAPTER 5

</ReportSpec>

Create a Page, Task, and Package

Page Spec

1. Right-click the project and select Add > New Item. The Add New Item screen appears.
2. From the Blackbaud AppFx Catalog items, select Page Definition Spec.

3. EnteranamesuchasPlanStageDurationsOLTPReport.Page.xml.

WIRING UP THE REPORT 66

-
Add New [tem - Custem.AppFePlanStageDurations.Catalog

R

4 Commeon ltems
Code
Data
General
Web
Windows Forms
Blackbaud AppFx Catalog
Blackbaud AppFx Client
Blackbaud AppFx CMS
Blackbaud AppFx Mobile
Blackbaud AppFx OLAP
Reporting
Waorkflow
WPF

Online Templates

Installed Templates Sort by: [Default =

ﬁ KPI Spec (SP)

E Map Entity Spec

Merge Task Spec

Mame Farmat Function Spec
Package Spec

Page Definition Spec

Query View Spec (View)
Record Operation 5pec (CLR)
Record Operation Spec (5P)
Record Operation Spec (Wrapped 5P)
=& = Relationship Map Spec

'.57 Report Spec

E Search List Spec (CLR)

Common kems

Commen Items

Common Items

Common lkems

Commoen Items

Common ems

Common kems

Commen Items

Common kems

Common kems

Common Items

Common fkems

Common lkems

Mame: PlanStageDurationsOLTPReport.Pagexml

Search Installed Templates p e |

Type: Common Items
Creates a spec for defining a page

s e

4. Click Add. The spec appears.

67 CHAPTER S

PlanStageCuration...LTPReport.Pagexml® > RAETSETERE el =0 M LN olalyd ey W

El«PageDefinitionSpec
xmlns="bb_appfx_pagedefinition™
xmlns:common="bb_appfx commontypes"
ID="85ac/dde-T479 -4?&3-3!292-4::86@81321:::8'"
MName="Plan5tageDuraticnsOLTPReport Page”
Description="REPLACE_WITH_DESCRIPTION"
Author="Blackbaud Product Development"
ContextRecordType="REPLACE WITH RECORDTYPE"
x

El <!-- Note: A page can optionally have a view form associated w
this form has no UL in this context, and is simply used as a wa]
returned by the expression form can be used as expressions in w
page, add the following attribute: ExpressionDataFormID="<s0

¢!-- define how the page header should appear --:
<PageHeader Caption="REPLACE WITH CAPTION" ImageKey="REPLACE WI

5. Adjust this information:
Name: Prospect Plan Stage Durations Report (OLTP Version) Page
Description: A page to display the Prospect Plan Stage Durations (OLTP Version) Report
Author: Technical Training

6. Removethe ContextRecordType attribute.

7. Changethe PageHeader Caption attributeto Prospect Plan Stage Durations Report (OLTP Version)

8. Removethe PageHeader ImageKey attribute.

9. Changethe Tab Captionto Prospect Plan Stage Durations Report (OLTP Version).

10. From thetemplate Section, removethe Datalist and Actions element.

WIRING UP THE REPORT 68

11.

12.

13.

14.

Within the section, add a Report element.

To the Report element, add the Aut oLoad attribute with a value of t rue.

To the Report element, add the TD attribute with the value of the TD for the report. This is the T D attribute in the Report Spec element for
the Report Spec.

"

<Section ID="7d956395-a588-4009-8a2d-40£09%a92e52b" Caption="Prospect Plan Stage Durations Report (OLTP Version)

<Report AutoLoad="false" ID="882feB807-2570-4900-9c89-0861070f7ea5"></Report>
</Section>

Remove the PageActionGroups element.

<PageDefinitionSpec
xmlns="bb appfx pagedefinition"
xmlns:common="bb appfx commontypes"
ID="85ac7dd6-£f479-47b0-ae92-4c8008132fc8"
Name="Prospect Plan Stage Durations Report (OLTP Version) Page"
Description="A page to display the Prospect Plan Stage Durations (OLTP Version) Report"
Author="Technical Training"

>

mented

<!-- Note: A page can optionally have a view form associated with it as the "Expression form". While imple-
as a view data form,
this form has no UI in this context, and is simply used as a way of loading additional information associated

with the page. The fields

ify an

to the

returned by the expression form can be used as expressions in various properties throughout the page. To spec-
expression form for this
page, add the following attribute: ExpressionDataFormID="<some guid>"-->

<!-- define how the page header should appear -->
<PageHeader Caption="Prospect Plan Stage Durations Report (OLTP Version)" />

<!-- define the tabs for the page - note that if only one tab is present, then that tab's sections are promoted
page level (ie., the tab
itself isn't shown -->
<Tabs>
<Tab ID="d850d962-3724-4616-964c-5a234ba79e61" Caption="Prospect Plan Stage Durations Report (OLTP Version)">

69 CHAPTER 5

<!-- define the sections for this tab -->
<Sections>
<Section ID="7d956395-a588-4009-8a2d-40£09a92e52b" Caption="Prospect Plan Stage Durations Report (OLTP Ver-
sion) ">
<Report AutoLoad="false" ID="882fe807-2570-4900-9c89-0861070f7ea5"></Report>
</Section>
</Sections>
</Tab>
</Tabs>
</PageDefinitionSpec>

15. Savethe Page Spec.

Task Spec

1. Right-click the project and select Add > New Item. The Add New Item screen appears.
2. From the Blackbaud AppFx Catalog items, select Task Spec.

3. EnteranamesuchasPlanStageDurationsOLTPReport.Task.xml.

WIRING UP THE REpORT 70

-
Add New [tem - Custem.AppFePlanStageDurations.Catalog

R

Installed Templates Sort by: [Default ,]
4 Common Items
i [EB simpleData List spec (sp)
Data
General @ Smart Field Spec
Web
Windows Forms m Smart Query Spec

Blackbaud AppFx Catalog
Blackbaud AppFx Client
Blackbaud AppFx CMS
Blackbaud AppFx Mobile
Blackbaud AppFx OLAP
Reporting

Waorkflow

WPF

Online Templates

‘!& SQL Function Spec
&ﬁl SQL Stored Procedure Spec
ﬁ SQL View Spec
Iﬁ‘ System Privilege Spec
D Table Spec
@ Task Spec
Ei? Tack Wizard Spec
@} Translation Function Spec
@ Ul Widget - Chart

i

Ul Widget - Customn Form

Common kems

Commen Items

Common Items

Common lkems

Commoen Items

Common fems

Common kems

Commen Items

Common ems

Common kems

Common Items

Common fkems

Common lkems

Mame: PlanStageDurationsOLTPReport. Taskxml

n

Search Installed Templates p e |

Type: Common Items
Creates a spec for defining a task

ETE TR

4. Click Add. the Task Spec appears.

71 CHAPTER S

Plan5tageDuration...LTPReport. Taskxml™
E<TaskSpec

xmlns="bb_appfx_ task"
xmlns:common="bb_ appfx_ commontypes™
ID="69c252bd-cbae-4bf2-b178 —35df5e328h26|"
Name="REPLACE_WITH_NAME™
Description="REPLACE WITH DESCRIPTION"
Author="Blackbaud Product Development™
FunctionalAreaID="REPLACE WITH FUNCTIOMALAREAID™
Sequence="REPLACE WITH SEQUENCE"
ImageKey="REPLACE WITH_ IMAGEKEY"
kg

Solution Explorer Source Control Explorer Pending Changes -...c

¢!-- indicate what this task should do (navigate to a page, show a form, etc. --»
<common: ShowPage PageID="REPLACE WITH PAGEID" />

| </TaskSpecs

5. Adjust this information:

e Name: Prospect Plan Stage Durations Report (OLTP Version) Page Task
e Description: A task to display the Prospect Plan Stage Durations (OLTP Version) Report Page
e Author: Technical Training
e FunctionalArealD: b6 9d7e7-c822-4bec-b223-dbe8635a5097
Note: This is the Prospects functional area.

To find this, look for the Prospects functional area in Administration > Application > Shell Design > Functional Areas. Then click View XML.

WIRING UP THE REPORT 72

Blackbaud CRM™ Welcome, Tom Tregner~ | ‘34~ Search All f4

|Home = | Constituents = | Marketing and Communications = |Revenue = [Sales = |Events ~ |Memberships ~ |Prospects = |Volunteers ~ | Foundations = | Sponso

Tasks - L
3 Refresh shell navigation ﬁl She“ Des:gn

Recent searches Tasks Pages User-defined Data Lists User-defined Smart Queries Ad-hoc Query Reports

M8 Data form search

Functional areas (24) [E]+ (2] &2
M} Record type search . -

stituent search Mame Description MNumber of Tasks

ode table search ° EL Constituents Provides an interface for managin.., 41
Search major giving © % Marketing and Communications Prevides an interface for managin... 120

prospects . o : : ini
A Major Giving Provides an interface for administ... i
Recently accessed * [{ Revenue Provides an interface for managin... 68
ng Status : -;: Sales Create and manage sales orders a... 52

ort Page
i i Events Provides an interface for managin... 51
& Report: Plan Stage :

Durations - As =4 Memberships Manage membership programs. 1

Report

B Data Form: A } f
Folder Perm di % Delek

Provides an interface for managin... 52

;@' & Prospects

| 5= View XML

Form

& Constituent Profile Report ~ 12 Volunteers . Provides an interface for managin... 19

73 CHAPTER 5

Catalog item XML =8 |

Prospects ﬂﬁannhadKML

<FunctionalAreaSpec
xmlns:xsd="http:/ www.w3.0org/2081/XML5chema"
wmlns:ixsi="http://www.w3.org/20881/XML5chema-instance™
I Eh 6h9d7e7 -c822 -4bec-b223 -dbe8635a509
Name="Prospects"
; Description="Provides an interface for managing prospects.”
7 Author="Blackbaud Product Development™
B Imagekey="catalog:Blackbaud.AppFx.ProspectResearch.Catalog.dll,Blackbaud.Ap
Sequence="45"
NameResourceKey="%%$prospects”
DescriptionResourcekey="%%provides_an_interface_for managing_ prospects"
xmlns="bb_appfx functionalarea"
s
<InstalledProductLlist wxmlns="bb_appfx_commontypes™:
<InstalledProduct ID="3117d2c8-7f46-42f2-abeb-bssaf2fe3e4s"” />
<InstalledProduct ID="42c15648-749e-4859-a56d-3a6474314cc7"” />
<InstalledProduct ID="6f77d512-d@dl-444f-9b46-bs6B3acfesf1l" />
</InstalledProductlist>
<ResourceFile AssemblyName="Blackbaud.AppFx.ProspectResearch.Catalog.dll” Clz
28 | </FunctionalAreaSpec:
4 1 [k

e Sequence: 1000

This is the Sequence number of the task with respect to other tasks, not the Sequence number for the functional area.

« ImageKey: Remove this attribute for now

WIRING UP THE REPORT 74

6. Replace <common:ShowPage PageID="REPLACE WITH PAGEID" /> with:

<common: ShowPage PagelID="85ac7dd6-£f479-47b0-ae92-4c8008132fc8" />

PageIDisthe ID forthe page created in the previous section. It is the ID attribute of PageDefinitionSpec forthat page.

<TaskSpec
xmlns="bb appfx task"
xmlns:common="bb appfx commontypes"
ID="69c252bd-cbae-4bf2-b178-35df5e320b26"
Name="Prospect Plan Stage Durations Report (OLTP Version) Page Task"
Description="A task to display the Prospect Plan Stage Durations (OLTP Version) Report Page"
Author="Technical Training"
FunctionalArealID="b6b9d7e7-c822-4bec-b223-dbe8635a5097"
Sequence="1000"
>

<!-- indicate what this task should do (navigate to a page, show a form, etc. -->
<common : ShowPage PageID="85ac7dd6-f479-47b0-ae92-4c8008132fc8" />

</TaskSpec>

7. Savethe Task Spec.

Package Spec

1. Right-click the project and select Add > New Item. The Add New Item screen appears.
2. From the Blackbaud AppFx Catalog items, select Task Spec.

3. EnteranamesuchasPlanStageDurationsOLTPReport.Package.xml.

75 CHAPTER 5

- ~
Add New [tem - Custem.AppFePlanStageDurations.Catalog @lﬂ—hJ
Installed Templates Sort by: [Default Search Installed Templates R |
4 Common Items
Type: C It
Code ﬁ KPI Spec (SP) Commeon Items Llos sl
D Creates a spec for defining a package of
il specs
General o Map Entity Spec Common ltems
Web 1
Windows Forms q“:;’-':_ Merge Task Spec Common Items
Blackbaud AppFx Catalog =
Blackbaud AppFx Client :& Mame Farmat Function Spec Common Items
Blackbaud AppFx CMS
Blackbaud AppFx Molile H:_:g Package Spec Commen Items
Blackbaud AppFx OLAP -
Reporting P S e S & 3 =
WorkHow age Definition Spec ommon ftems ‘ ‘
WPF = =
| Query View Spec (View) Common Items | =
Online Templates ‘hr ‘ ‘
* Ii i i |
L | Record Operation 5pec (CLR) Commeon Items
T2
.
L | Record Operation Spec (5P) Commeon Items
L]
* ? .
W Record Operation Spec (Wrapped 5P) Common Items
1]
ey
= Relationship Map 5pec Common Items
Report Spec Common Items
E Search List Spec (CLR) Common ltems =
Mame: PlanStageDurationsOLTPReport.Packagexml
e
p

4. Click Add. The Blackbaud Appfx Package Wizard appears.
5. Click Create a package spec that includes the selected specs from this project.

6. Select the Report Spec created in Create a Report Spec on page 54 and the Page Spec and Task Spec created in this topic.

WIRING UP THE REPORT 76

-

Blackaud Appfx Package Wizard =l

Create a Package

(") Create a blank package spec

@ Create @ package spec that indudes selected specs from this project

PlanstageDurationsOLTP. Repaort, xml
PlanstageDurationsOLTPReport. Fage, xml
FlanstageDurationsOLTPReport, Task, xmil

77 CHAPTER S

7. Click OK. The Package Spec appears. With the comments about dependency order removed, the spec will look like this:

<PackageSpec
xmlns="bb_ appfx package"
xmlns:common="bb appfx commontypes"
ID="a34984f1-f1le7-4970-b16d-ecb929e02951"
Name="MajorGivingPlanStageDurations Package"
Description:"REPLACE_WITH_DESCRIPTION“
Author="$authors"
>

<common : DependencylList>

<common : Dependency CatalogAssembly="MajorGivingPlanStageDurations.dl1l" Cat-
alogItem="MajorGivingPlanStageDurations.MajorGivingPlanStageDurations.Report.xml" />

<common:Dependency CatalogAssembly="MajorGivingPlanStageDurations.dl1l" Cat-
alogItem="MajorGivingPlanStageDurations.MajorGivingPlanStatusDurationsReport.Page.xml" />

<common : Dependency CatalogAssembly="MajorGivingPlanStageDurations.dl1l" Cat-
alogIltem="MajorGivingPlanStageDurations.MajorGivingPlanStatusDurationsReport.Task.xml" />

</common : DependencyList>

</PackageSpec>

8. Adjustthe Name, Description,and Author:

Name="Prospect Plan Status Durations (OLTP Version) Package"

Description="A package to load the artifacts for the OLTP version of the Prospect Plan Stage Durations
Report"

Author="Technical Training"

WIRING UP THE REPORT 78

9. Savethe spec.

79 CHAPTER S

Load the Package

1. Build your Blackbaud AppFX Catalog project which contains the Report Spec, RDL file, Page Spec, Task
Spec, and Package Spec. Right-click the project and select Build.

2. Open the project folder in Windows Explorer and browse to the folder which contains the application
extension. Right-click the project and select, Open folder in Windows Explorer. Then browse to the bin
folder. For example:

C:\Team Projects\Documentation\Technical Train-
ing\Cu-
stom.AppFx.PlanStageDurations.Catalog\Custom.AppFx.PlanStageDurations.Catalog\bin\Debug

3. Copy the application extension DLL to the bin folder for the application instance. For example, copy:

Custom.AppFx.PlanStageDurations.Catalog.dll

To:

C:\Program Files\Blackbaud\bbappfx\vroot\bin

Note: You can add a post-build command to the project to perform these steps every time you build.
But you must ensure Visual Studio has rights to copy to the bin folder. For example, you may need to
run Visual Studio as an Administrator for that to work.

4. From the Blackbaud Infinity based application, browse to Administration > Application > Catalog
Browser.

5. Filter the items in the Catalog Browser for Type: Package and Source: <name of the DLL>

6. Click Apply.

:‘fj Catalog Browser

Catalog Browser ! Optional Features

Catalog browser Load item View XML | [E]
Type: i@ Package - Author: vJ
: i 4 Apply &F Reset
Source: |4 MajorGivingPlanStageDurationsDU w || Exdude loaded items
Mame Type Description Source
Package
¥ Major Giving Plan Stage Durations Package Package Specs related to the Major Giving Plan Stage Durations Re... MajorGivingf

7. Highlight the package and click Load item.

8. Once the package loads, browse to the Prospects functional area. The task to open the report appears
under More tasks.

Note: Shown from the web shell.

WIRING UP THE REPORT 80

g a Prospects

Prospect research Rese
&L Search constituents 3 se
&5 Manage research groups PFi
&/ Add a prospect research request b
,}'. by prospect research page &M
%, Add an individual @ Fr
flir Add a household v

£, add an organization
Add a group

More tasks Conf
@ major Giving Plan Status Durations o C
Report Page Task e

9. Click the task.

81 CHAPTER 5

Blackbaud CRM™ Welcome, Tom Tregner~ | 451+ Searc

|Home - | Constituents ~ | Marketing and Communications ~ | Revenue = | Events = | Memberships = |Prospects ~ | Volunteers ~ | Foundations ~ | Spensorsh

Recent searches

% Search major giving * Prospect Plan Stage Durations Report (OLTP Version)
p ts
Application user search
™ Record type search Prospect Plan Type Code: | Major giving |v
M Code table search)
4 4 [t Jofr b bl | | Find | Next B> 3
Recently accessed
Prospect Plan Stage Durations Report (OLTP Version)
Major giving

Stage Average days in stage (overlapping) Min Max

Cultivation 0.06 000 11.35
|dentification 003 0.00 5.70
Megotiation 0.00 0.00 0.00
Solicitation 000 0.00 0.00

Stage Min Max

Average Average

consecutive days in stage times in a stage

{Average duration of (Average

stage occurrences) number of stage

occurrences)

Cultivation 004 000 450 157
Identification 006 000 623 163
Megotiation 0.00 0.00 0.00 223
Solicitation 0.00 0.00 0.00 1.37

Stage Average nonconsecutive days in Min Max

stage
Cultivation 0.04 000 6.12
Identification 0.06 0.00 1017
MNegotiation . 0.00 0.00 0.00
Solicitation ' 0.00 0.00 0.00

81612012 Prepared byt BENT\TomTr Page 1 of 1

blackbaud

Pollshlng the Report

We have now created a report and Blackbaud Infinity specs to render the report in the application interface. But
the report itself is not finished. There is a single table that displays calculations of average durations for plan
stages in a table, one of the requirements in Prospect Plan Status Durations Report on page 11. No attention has
been given to the layout of the report and the format of the durations. Within these topics we will format the
existing report. Since we have wired our report to display in the Infinity application, most of the formatting work
will be with the RDL file itself. But as we add parameters, we will return to the Blackbaud Infinity specs.

Formatting the Report

We won't delve into step-by-step instructions for formatting. The assumption is that the RDT editor comes with
sufficient documentation to guide you. What follows is some information specific to this example.

Design

The report will be formatted along these guidelines:

Report Item Guidelines

Arial 14pt Bold, White
Report title
Background bar 32px high, #4682B4, flush with edges

Report param-

oters Arial, 9pt, DimGray (labels bold); background #F5F5F5

Arial, 9pt, Black (labels bold); background #F5F5F5
Report summary

Divider line between parameters and summary is 1pt #CCCCCC

Arial, 11pt, White, Bold; Background #99B6CC, 24px high; 18px padding above bar

Sub-report title
Used when the summary sub-report needs to be displayed/hidden as a parameter.

Column header |R244, G248, B251 (#F4F8FB); Border is R70 G130 B180 (#4682B4)

box

Top is 1pt, bottom is 2pt

Column header |Arial, 9pt, Bold, R70 G130 B180 (#4682B4)

83 CHAPTER 6

Report Item Guidelines
text

Arial, 9pt, Black

Report rows separated by a 1pt gray line (HEEEEEE)
Report data

Right-align numbers, currencies, dates, and times.

Left-align text and IDs (even if numeric).

Data group parent
rows

Arial, 9pt, Black; Background #F5F5F5

Sub totals Arial, 9pt, Black, Bold
Arial, 10pt, Black, Bold
Total
Top and bottom borders #4682B4
Footnotes Arial, 8pt, black
Tahoma, 7pt, black, light; background #F5F5F5, 18px tall
Footer
Footer contains date and time, prepared by and page number, as indicated below.
) All pages should repeat the Title, Column headers and Footer. The summary panels and
After first page

footnotes should not repeat.

POLISHING THE REPORT 84

Adding Parameters

The design stated: The report should be filterable by constituency of prospect, by prospect plan type, or both. So we need some way to parameterize con-
stituency or prospect plan type. Our example will only show prospect plan type.

For the overlapping perspective as we have it so far, there is no consideration for prospect plan type. Prospect plan type is stored as PROS -
PECTPLANTYPECODEID onthe PROSPECTPLAN table. This is a foreign key to the PROSPECTPLANTYPECODE table, a code table for prospect plan
type codes.

Up until now we have avoided joins to the PROSPECTPLAN table in the stored procedures. This is made possible by using only the IDs for prospect
plans. The only inner join necessary was to PROSPECTPLANSTATUSCODE to get the friendly name for the prospect plan status code. Now we not only

need the prospect plan but the friendly name for the prospect plan type code. But we can avoid the join to PROSPECTPLANTYPECODE by placing that
lookup in the Ul for the report.

To test the join, we can modify the query inside of the stored procedure and execute it in SQL Server Management Studio:

declare @PROSPECTPLANTYPECODEID uniqueidentifier;
set @PROSPECTPLANTYPECODEID = '92CEC00D-F9B3-4713-A1CD-A944B1COD5S8F"';

inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
and pl. [PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID

85 CHAPTER 6

This limits the query to prospect plans of type Major giving. The uniqueidentifier forthe Major giving plan type codeis 92CEC00D-F9B3 -
4713-A1CD-A944B1COD58F. We don't need those first two lines in our actual stored procedure. Once we are satisfied with the results, we can
change the stored procedure to accept @PROSPECTPLANTYPECODEID as a parameter. Currently our stored procedures begin like this:

create procedure dbo.USR USP REPORT PLANSTAGEDURATIONSOVERLAPPING
as

We can modify the beginning of the CREATE PROCEDURE statement to this:

create procedure dbo.USR USP REPORT PLANSTAGEDURATIONSOVERLAPPING (@PROSPECTPLANTYPECODEID uniqueidentifier)
as

This example will pass one parameter, an ID for the prospect plan type code. This way the report can re-purposed for each type of prospect plan.

create procedure dbo.USR USP REPORT PLANSTAGEDURATIONSOVERLAPPING (QPROSPECTPLANTYPECODEID uniqueidentifier)
as
with [STEPS]
as (
select i.[PROSPECTPLANSTATUSCODEID],
i. [ACTUALENDDATETIME],
min (i.[ACTUALSTARTDATETIME]) over (
partition by i.[PROSPECTPLANID],
i. [PROSPECTPLANSTATUSCODEID]
) as [FIRSTSTEPINSTAGEDATETIME],
max (i.[ACTUALENDDATETIME]) over (
partition by i.[PROSPECTPLANID],
i. [PROSPECTPLANSTATUSCODEID]
) as [LASTSTEPINSTAGEDATETIME]
from [INTERACTION] as i inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1 and pl.[PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
)
select p.[DESCRIPTION] as [STAGENAME],
avg (cast ((s. [LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [AVGSTAGEDURATION],

POLISHING THE REPORT 86

min (cast ((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MINSTAGEDURATION],
max (cast ((s. [LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MAXSTAGEDURATION]
from [STEPS] as s
inner join [PROSPECTPLANSTATUSCODE] as p on s.[PROSPECTPLANSTATUSCODEID] = p.[ID]
where (s.[ACTUALENDDATETIME] = s.[LASTSTEPINSTAGEDATETIME])
group by p.[DESCRIPTION]

87 CHAPTER 6

Update the RDL File with the Parameter

In the RDL file, we need a to pass the parameter to the report so the report can pass the parameter to the stored
procedures.

|Repﬂrt Data > 1 X
New ~ Edit. X o »

#-d Built-in Fields
-l Parameters

That report parameter can gather the IDs from a Dataset. For example, a dataset which holds the IDs for the
PROSPECTPLANTYPECODE table.

' = = =
Report Parameter Pmpertigsﬂ — u

General . i
Choose the available values for this parameter.
Lorailable \Values
Diefzult Values Select from one of the following options:
Bt i |:_| Mone
]) Specify values |
| @ Getvalues from a query
N
Dataset:
| PROSPECTPLANTYPECODEID -
Value field:
1 D - |
| .
' Label field:
[]
i
o [omn

T

The dataset can be a simple query of the PROSPECTPLANTYPECODE table.

POLISHING THE REPORT 88

AR, BEINDINITY
&5 Datasets
D Overlapping
|=:| Consecutive
|f| Monconsecutive

(=WEE] PROSPECTPLANTYPECODEID

select [ID]
from [PROSPECTPLANTYPECODE]

89 CHAPTER 6

'." = -
Dataset Properties " ——

Choose a data source and create a query.

Fields

Options Mame:

Filters PROSPECTPLANTYPECODEID
Parameters (71 Use ashared dataset,

@ Use a dataset embedded in my report,

Data source: I
| BEInfinity) [new.

CQuery type:
@ Text Table (71 Stored Procedure

Query:

select [ID] = &] |

from [PROSPELTPLANTYPECODE]

-

[Cuery Designer...] [Import...] [Refresh Fields

Time out {in seconds):

> B

Each of the datasets for the stored procedures can also have a parameter.

POLISHING THE REPORT 90

Dataset Properties i — T gt |

Query
Choose query parameter values.
Fields
Options | Delete | | & || @ |
PRy Parameter Mame Parameter Value

@PROSPECTPLANTYPECODEID [@PROSPECTPLANTYPECODEID] v

Because the parameter is a uniqueidentifier, for the Parameter Value expression:

=Parameters!PROSPECTPLANTYPECODEID.Value

This does not match what appears in the Parameter Value field. But, if you click the function button to edit the
Parameter Value field with an expression editor, the above expression may appear. If that is not the expression,
the report may run, but the correct parameter value may or may not be passed.

You can preview the report in Business Intelligence Development Studio at this point. The parameter appears as
a drop-down of GUIDs.

ProspectPlanStatus...tions.rdl [Design]| - X

View Report

8ed97dc1-973e-43b6-33f5-335c3d376b48
4 4 51 | . 76562c83-8afa-4959-95dc-5b7hdecda949 'l | il bl

| [of b M | 4
1% F P | Y 163100d5-80c-41 1f-339¢-7c6 7432086df |

81ea1099-beed-4cda-b726-8f345d66959
0734536226 1d-4fc4-8204-fa353b325a 12

We won't go beyond that for the RDL file. But we do have to create a friendly user interface to select those code
table entries in the Blackbaud Infinity application. For that, we will add a Ul Model.

Add a Ul Model for the Parameter

In the Report Spec, add form field information to map to the stored procedure parameter.

<common:FormMetaData>
<common:FormFields>
<common:FormField DataType="Guid" FieldID="PROSPECTPLANTYPECODEID"
Caption="Prospect Plan Type Code ID"
Required="true">
<common:CodeTable CodeTableName="PROSPECTPLANTYPECODE" />
</common:FormField>
</common : FormFields>

91 CHAPTER 6

Reload the Report Spec into the catalog.

In your solution, create a new Ul Model Project.

- ~
Add New Praject l —— [
— —— o — - - e
Recent Templates [.NI:—I' Framework 4 - l Sort by: [De‘fault | Search Installed Templates pe |
Installed Templates L. N
_ _ OLAP Solution Visual Basic RIS
4 Visual Basic A project for creating a Blackbaud AppFx
Windows server-side Ul model assembly (.dll)
W Catalog Project Wisual Basic
eb
Office e
Blackbaud AppFx g Integrated Workflow Project Visual Basic
Cloud
Reporting Mobile Project Visual Basic
I SharePoint
Sitverlight Parts Project Wisual Basic
f Test
WCF ﬁ Web API Client Template Visual Basic
f Workflow
Vil C E Workflow Consele Project Wisual Basic
Visual C++
Visual F# | i
: 4 Ul Model Project Visual Basic
Documentation
Other Project Types ==
Database g Client Component Project Wisual Basic
Test Projects
Online Templates
Marne: ProspectPlanStatusDurations.UIModel
Location: C\Team_Projects\Documentation\Technical_Training\TechnicalTrainingUtilities\ProspectPlanSt: « Browse...

——

The project appears in the solution.

4 Eﬁ Pruspechiiér'|.Sfatusljura;‘:i.ons..i.jih'l-;:;del-
z| M}r .Prcu_iect .
4 [htmiforms
[prospectplanstatusdurations
[#] postbuild.bat
|§| UlModel.ruleset

To the new Ul Model project, add a Ul Model. Right-click the project and select Add > New Item. The Add New

Item screen appears.

From the Add New Item screen, select Blackbaud AppFx Catalog > Ul Model Wizard. You can leave the Name

field as the default.

POLISHING THE REPORT 92

Add New [tem - ProspectPlanStatusDurations.UlModel ? 1 2

Installed Templates Sort by: [[}efauh; - Search Installed Templates R |

4 Common ftems

Type: C It
Code = UI Widget - Data Form Common Items T e e
D Creates a Ul Model for a given spec. The
i name will be derived from the spec,

General Ul Widget - List Commeoen lkems
Web
Windows Forms View Data Form Template Spec (CLR) Common Items
Blackbaud AppFx Catalog
Blackbaud AppFx Client View Data Form Template Spec (5P) Common Items
Blackbaud AppFx CMS
SRR AT View Data Form Template Spec (Wrapped 5P) Common Items
Blackbaud AppFx OLAP
Reporting
Workflow | E A Workflow Inbox Spec Commen Items
WPF

[% Workflow Spec Common Items

Online Templates
_ﬁf Workflow Start Add Data Form Template Spec Commen Items
ﬂ? Workflow Task Complete Add Data Form Template Sp... Common ftems

=
iﬂ Shell Task Filter Common kems
=]
b= I Model Wizard Common lkems ‘
aaa
= Web Shell Custom Action Commen Items

m
—
—

Mame: UIModell zml

TS BT

Click Add. The blackbaud AppFx Ul Model Wizard appears.

93 CHAPTER 6

i '
Blackbaud AppFx Ul Model Wizard eS|
Create a New UI Model a
ey

Thiz will generate a new UI model given an existing dataform, datalist, or searchlist spec. Thename = & &
of the UT model will be derived from the name on the spec and the generated dasses will be added
to the current project.

spec file: |
Mamespace (optional): ProspectPlanstatusDurations

Class name:

[7] Generate Html file for the model

older: C:¥Team_Projects\Documentation{Technical_Training (T Eu:lmiu:al'rrainingLIﬁIiﬁEé
Generate model from the database
Server: MIHFX99\MSSQLSER VER 2008R:

Database name: BBINfinity

| ok || cancl

Click the folder next to the Spec file field. The Open file dialog appears.

Browse to the Report Specin your catalog project and click Open. The Spec file, namespace, and Class name
fields are populated.

Select Generate Html file for the model.
Click OK. The Ul modelis added.

4 .ﬂ ProspectPlanStatusDurations. UlModel
[=d] My Project
4 [htmiforms
[prospectplanstatusdurations
|#] ProspectPlanStatusDurationsReport. htrnl
4 [LinkedSpecs
it] ProspectPlanStatusDurations.Report.xml
[&] postbuild.bat
{e] ProspectPlanStatusDurationsReportUIModel.vb
IE:GI UIModel.ruleset

The Report Spec FormMetaData is updated to include this:

POLISHING THE REPORT 94

<common : WebUIComponent>
<common:UIModel Assem-—
blyName="ProspectPlanStatusDurations.UIModel.dl1l" Class-
Name="ProspectPlanStatusDurations.UIModel.ProspectPlanStatusDurations.ProspectPlanStatusDurationsReportUIModel"

/>
<common : WebUI>
<common :ExternalResource Url="browser/htmlforms/Pr-

ospectPlanStatusDurationsReport.html" />
</common : WebUI>
</common : WebUIComponent>
Create a folder called custom under prospectplanstatusdurations.
Drag ProspectPlanStatusDurationsReport.html to the custom folder.
Build the project.
Copy the DLL file to vroot\bin.
Copy the HTML file to vroot\browser\htmlforms ****

You can now view the parameterized report in the Blackbaud Infinity application.

Blackbaud CRM™ Welcome, Tom Tregne

|Home = | Constituents - | Marketing and Communications ~ |Revenue = |Events = | M

Recent searches

-
(@ Prospects

Recently accessed

Prospect research R
&L Search constituents %]
¥ Manage research groups &l
& Add a prospect research request

& My prospect research page

More tasks Cq

@ prospect Plan Status Durations Report
Page Task

95 CHAPTER 6

Blackbaud CRM™ Welcome, Tom Tregner~ | &9+ Search Al features pled [= a

|Home ~ | Constituents = | Marketing and Communications ~ | Revenue ~ |Events = | Memberships ~ |Prospects ~ |Volunteers ~ | Foundations ~ | Sponsorship -

Recent searches

Prospect Plan Status Durations Report

Recently accessed

Prospect Plan Type: | |v|

The 'PROSPECTPLANTYPECODEID' parameter is missing a value

Blackbaud CRM™ Welcome, Tom Tregner~ | 8%~ Search All features el [= e

|Home ~ |Constituents ~ | Marketing and Communications ~ | Revenue ~ |Events = | Memberships ~ |Prospects ~ |Volunteers ~ | Foundations ~ | Sponsorship =

Recent searches

Prospect Plan Status Durations Report

Recently accessed

I}‘ Prospect Plan Type: | |v|

Board recruitment
The 'PROSPECT Carparate giving izsing a value

Foundation giving

Major giving

PFlanned giving

To avoid the missing parameter message, in the Page Definition Spec:

<PageDefinitionSpec
xmlns="bb appfx pagedefinition"
xmlns:common="bb appfx commontypes"
ID="681D2833-9F76-4547-81C0-8840A24ECC5E"
Name="Prospect Plan Status Durations Report Page"
Description="A page to display the Prospect Plan Status Durations Report"
Author="Technical Training"
>

<PageHeader Caption="Prospect Plan Status Durations Report" />

<Tabs>
<Tab ID="DA7C37C0-59B8-40F1-80E8-B22A3D5SE02BI9" Caption="Prospect Plan Status

Durations">

<Sections>
<Section ID="A62F6D4A-E4B9-4183-B19A-5B49DE17C741" Caption="Prospect
Plan Status Durations">
<Report AutoLoad="false" ID="6C02DB4A-5032-4130-80BD-B99BODCAL192A" />
</Section>
</Sections>
</Tab>
</Tabs>

</PageDefinitionSpec>

POLISHING THE REPORT 96

ProspectPlanStatusDurationsReportUIModel.vb

Namespace ProspectPlanStatusDurations
Public Class ProspectPlanStatusDurationsReportUIModel

Private Sub ProspectPlanStatusDurationsReportUIModel Loaded(ByVal sender As
Object, ByVal e As Blackbaud.AppFx.UIModeling.Core.LoadedEventArgs) Handles

Me.Loaded
End Sub
End Class

End Namespace

ProspectPlanStatusDurationsReport.html

<div id="#MAP#ProspectPlanStatusDurationsReport">
<table>
<tr id="#MAP#PROSPECTPLANTYPECODEIDﬁcontainer">
<td>
<label id:"#MAP#PROSPECTPLANTYPECODEID_caption" for="#MAP#-
PROSPECTPLANTYPECODEIDivalue"></label>
</td>
<td>
<input id="#MAP#PROSPECTPLANTYPECODEID value" type="text" />
</td>
</tr>
</table>
<!-- To define fields in multiple columns on the form, simply add/move the
fields to this div
<div class="bbui-forms-fieldset-column">
<table>
</table>
</div>
-—>
</div>

97 CHAPTER 6

blackbaud

chapter 7
CRIRRNTE 1000 TSR WEUTOT FURARN U 10 1 | | 0 1
Should the Report Query a Table or a VieW? . .. 98
Something is Missing from the Table or View 99
Creating a Data Warehouse VersioNn ... 100
Extending the Warehouse with a Table to Extend the Fact 102
Creating Another Data Warehouse VersioNn 119
Extending the Data Warehouse with New Tables and Views 121

In this section, we discuss reports which query the data warehouse database. In Should the Report Query a Table
or a View? on page 98 and Something is Missing from the Table or View on page 99 we cover some challenges. In
Creating a Data Warehouse Version on page 100 and Extending the Warehouse with a Table to Extend the Fact
on page 102, we describe the creation of a report and data warehouse extension to report using a query which is
similar to our OLTP version. In Creating Another Data Warehouse Version on page 119 and Extending the Data
Warehouse with New Tables and Views on page 121, we describe a more tailored extension and report.

Should the Report Query a Table or a View?

As of version 2.93 of Blackbaud CRM, the data warehouse tables include prospect plan status information for
interactions and prospect plans. But views in the warehouse do not. Views in Blackbaud Data Warehouse sup-
port access to warehouse data through a star schema. Stars for major giving and prospects functionality have
not been created. There are three options for reporting from the warehouse for this situation.

1. Query Blackbaud Data Warehouse tables through the report
2. Extend Blackbaud Data Warehouse with views of the tables and query the views
3. Extend Blackbaud Data Warehouse with new tables, views of the tables, and query the views

The preferred method to query Blackbaud Data Warehouse is through the views which establish the star
schema. If you report off of the tables directly, you run the risk of a breaking change to your report if those tables
are changed. Similarly, if you extend the warehouse to create a view of the existing tables, changes to the existing

99 CHAPTER 7

tables may break the view extension and also break the report. However, in this situation, you could fix the view
instead of the report.

In order to reduce the number of potential break points due to future changes in Blackbaud Data Warehouse,
you could extend the warehouse with new tables and views to support prospect plan status.

To create an extension to Blackbaud Data Warehouse to support a view, you will minimally need a database
revisions extension to add the view. An database revision extension and an ETL extension is necessary if you add
a table. For information about how to extend Blackbaud Data Warehouse, see BBDW/OLAP Extensibility Model.

Note: Blackbaud Data Warehouse also supports OLAP extensions for the OLAP cube that is fed by the data
warehouse. But OLAP reporting and extensions are not within the scope of this discussion.

Something is Missing from the Table or View

With our prospect plan stage durations example, a data warehouse query can be built which is very similar to the
OLTP version. But some of the columns available in the OLTP database are not available in the data warehouse
database. For example, the OLTP INTERACTION table has columns for actual start datetime and actual end
datetime. But the fact and dimension tables only have one datetime column. That column corresponds to a col-
umn in the OLTP database which coalesces the actual start datetime and the expected start datetime. So that
leaves us with some choices to make. Here are some options.

Use what is there: The only end datetime needed is the end datetime for the last step in the plan. And the inter-
actions only have a day associated with them. So a useful metric can still be created. But it will not convey hours.
In this case, we could adapt the query to use the same date for the one place where end datetime is used. But it
would probably be better to rewrite the query altogether since the time parts are considered throughout. The
metric would show zero days rather than one day in many situations.

Create a new table to extend the fact and a view to join the fact to the new table: This requires extending the
data warehouse. But it is a fairly simple extension since we can base it on the existing table revision and SSIS pack-
age. It would allow us to model our data warehouse query on the OLTP query we already have. Unfortunately,
the data is spread across a fact table and a dimension table. So we need to create an extra join to make this work.
We can leave this to whoever uses the table or create a view to join the fact to the new table. We will see the ben-
efit of placing the reporting burden on the data warehouse rather than the transactional database. But the query
won't be more efficient.

Note: If we were extending the OLAP cube, we could create a fact extension to accomplish this.

Create new tables and views tailored to the reporting needs: This requires extending the data warehouse. It
also requires thoughtful data modeling. And within this option, one needs to consider whether the extension will
only support the specific reporting needs at hand or if there will be other reporting needs down the road. For
example, with the prospect plan stage durations example, it is necessary to create sequences and many rows are
eliminated in the course of the query. The extension could reflect this to make the report more efficient. But is
would limit the functionality of the extension to support other reports.

https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cocholapextensibiitymodel.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cocholapextensibiitymodel.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cocholapextensibiitymodel.htm

REPORTING OFF THE WAREHOUSE 100

Creating a Data Warehouse Version

We could reuse many of the artifacts we created for the OLTP version. But to keep both versions, it may work better to create a new Page Spec, Task
Spec, and Report Spec. Since the process is the same, you can refer to Wiring up the Report on page 44. Firstly, we will show queries to the data ware-
house database which are constructed in the same way as the OLTP version. There are three main issues for our prospect plan status example:

1. We must query the tables rather than the views. This is because the views do not contain enough information.

2. Thetables themselves are missing a date column used in the transactional version. We can still create a useful metric without this column. But it
would require revamping the approach. These sections highlight those locations in the queries: Overlapping Perspective which Mirrors the OLTP
version on page 100 and Creating a Data Warehouse Version on page 100. In Extending the Warehouse with a Table to Extend the Fact on page
102, we describe the creation of an extension which allows us to mirror the OLTP version completely.

3. Anextrajoin is required because information is spread across a fact and dimension table. In another section, Creating Another Data Warehouse
Version on page 119 and Extending the Data Warehouse with New Tables and Views on page 121, we will explore a more tailored approach.

Overlapping Perspective which Mirrors the OLTP version

The warehouse has analogous tables for INTERACTION, PROSPECTPLAN, and PROSPECTPLANSTATUS. For the overlapping perspective, it is pos-
sible to create a very similar query. But the actual end datetime does not exist. So, the closest we can get is with INTERACTIONDATE, in the OLTP data-
base and the data warehouse database, this is created through a COALESCE of the actual and expected datetimes. We will describe extending the data
warehouse to overcome this. But for reference, this is what the query would look like INTERACTIONDATE was used for actual start datetime and actual
end datetime. Again, if we were limited to just that datetime, it would be better to revamp the query to only consider days or to extend the warehouse to
include actual start datetime and actual end datetime.

with [STEPS]
as (
select i.[PROSPECTPLANSTATUSDIMID],
i. [INTERACTIONDATE],
min (i.[INTERACTIONDATE]) over (
partition by i.[PROSPECTPLANDIMID],
i.[PROSPECTPLANSTATUSDIMID]
) as [FIRSTSTEPINSTAGEDATETIME],
max (i.[INTERACTIONDATE]) over (
partition by i.[PROSPECTPLANDIMID],

101 CHAPTER 7

i.[PROSPECTPLANSTATUSDIMID]
) as [LASTSTEPINSTAGEDATETIME]
from [BBDW].[FACT INTERACTION] as i
inner join [BBDW] . [DIM INTERACTION] as j on i.[INTERACTIONDIMID] = j.[INTERACTIONDIMID]
where j.[ISINTERACTIONCOMPLETED] = 1
)
select p.[PROSPECTPLANSTATUS] as [STAGENAME],
avg (cast ((s. [LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [AVGSTAGEDURATION],
min (cast ((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MINSTAGEDURATION],
max (cast ((s. [LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MAXSTAGEDURATION]
from [STEPS] as s
inner join [BBDW] . [DIM PROSPECTPLANSTATUS] as p on s.[PROSPECTPLANSTATUSDIMID] = p.[PROSPECTPLANSTATUSDIMID]
where (s.[INTERACTIONDATE] = s.[LASTSTEPINSTAGEDATETIME])
group by p.[PROSPECTPLANSTATUS]

REPORTING OFF THE WAREHOUSE 102

Extending the Warehouse with a Table to Extend the Fact

The tables used by our queries were described in Finding Data in the Data Warehouse Database on page 24. Those tables are insufficient for our design
requirements because they do not include actual start datetime and actual end datetime. We don't want to alter that table because it is possible the table
will be updated in a subsequent release of Blackbaud Data Warehouse. Instead, we are going to create a new table with the actual start datetime and

actual end datetime which we can join to the existing fact table in queries.

Note: Another approach would be to replicate the FACT INTERACTION table with the addition of those columns. This would have the advantage of
avoiding an extra join in the report queries. But it would require more complex database revisions and ETL logic in the SSIS packages. Also, it increases

risk because so many INTERACT ION columns now require updates in two tables.

File for Revisions

If you don't already have a file for revisions, create an XML file with these contents:

<?xml version="1.0" 72>
<DBRevisions xmlns="bb appfx dbrevisions">
<DBRevision ID="1">
<Comment>Extended Database Schema</Comment>
</DBRevision>

<DBRevision ID="5">
<ExecuteSqgl>
<! [CDATA[
if not exists (
select *
from sysobjects so
where so.type = 'P'
and so.name = 'RESETETL EXT'
)
exec sp executesqgl N'create procedure BBDW. [RESETETL EXT] as set nocount on;'
11>
</ExecuteSqgl>
</DBRevision>

103 CHAPTER 7

</DBRevisions>
Name the file according to the naming convention for revisions extensions.

CREATE TABLE Revision

We will call the table FACT INTERACTIONACTUALTIMES EXT.One oftherevisions we need is the revision which actually creates the table. Since
we are replicating some of the FACT INTERACTION table, we can grab some of that from SQL Server Management Studio. After opening SSMS, we

can connect to the database and filter the tables for FACT INTERACTION. To filter the tables for a database, right-click the Tables node for the data-
base in Object Explorer and select Filter > Filter Settings.

5 | BBInfinity RPT_BBDW

[+ [d Database Diagrams
» "JE— New Table...
=
m 3 | Filter > Rernove Filter
] j 1 ;
‘.__' = Start PowerShell Filter Settings
[+
= 8 Reports r
m B
= = Refresh Ty
e B | BREOW DI COMSTITIIERCY

In the Name field of the Filter Settings screen that appears, enter FACT INTERACTION and click OK.

REPORTING OFF THE WAREHOUSE 104

-~

ST Filter Settings

| 28 |
Server: MJHFXHH\M@GLSEHVEHZ{H]EH
Database: EBInfinty_RPT_BEDW
Fitter Criteria:
| Property Operator Value |
| Mame Cortains FACT_INTERACTION
| Schema Contains
| Owner Equals |
| Creation Date Equals

Include or exclude objects based on the name or part of a name.

Clear Fitter] [

oK

J [Coned ||

From the filtered list, right-click FACT INTERACTION and select Script Table as > CREATE To > New Query Editor Window.

105 CHAPTER 7

= L] BEBInfinity RPT_BBDW
[Database Diagrams
= [Tables (filtered)
[3 System Tables

Bl BEDW.FACT INTERACTIGEL

] BEDW.FACT INTERACTI New Table...
=] BBDW.FACT_INTERACTI Design
3 BBDW.FACT_INTERACTI Select Top 1000 Rows

= BEDW.FACT_INTERACTI

Edit Top 200 Rows
= BEDW.FACT_INTERACTI

=] BBDW.FACT_INTERACTI i b E CREATE To » | New Query Editor Window
=] BBDW.FACT_INTERACTI View Dependencies ALTER To B Fie bz
] BBDW.FACT INTERACTI :

B e Full-Text index 4 BRORTe * | Clipboard

The part we need is the CREATE TABLE statement.

SQLQuery5.sql - ..BBNT\TomTr (65))| MIHFX99\MSSQLS...es ForDocument®]’Fh

SET ANSI NULLS ON
E8)

SET QUOTED IDENTIFTER ON
=0

] CREATE TABLE [BBDW).[FACT INTERACTION] |
[INTERACTIONFACTID] [int] IDENTITY(1,1)
[INTERACTIONSYSTEMID] [uniqueidentifier]
[CONSTITUENTDIMID] [int] NULL,
[CONSTITUENTSYSTEMID] [uniqueidentifier]
[FUNDRAISERDIMID] [int] NULL,

/***%%% Opject: Table [BBDW].[FACT INTERACTION] 54

NOT NULL,
NULL,
NULL,

EITTT T

Copy this into the query editor.

CREATE TABLE [BBDW].[FACT INTERACTION] (
[INTERACTIONFACTID] [int] IDENTITY (1,1) NOT NULL,

REPORTING OFF THE WAREHOUSE 106

[INTERACTIONSYSTEMID] [uniqueidentifier] NULL,
[CONSTITUENTDIMID] [int] NULL,
[CONSTITUENTSYSTEMID] [uniqueidentifier] NULL,
[FUNDRAISERDIMID] [int] NULL,
[FUNDRAISERSYSTEMID] [uniqueidentifier] NULL,
[INTERACTIONDATEDIMID] [int] NULL,
[INTERACTIONDATE] [datetime] NULL,
[INTERACTIONDIMID] [int] NULL,
[EVENTDIMID] [int] NULL,
[PROSPECTPLANDIMID] [int] NULL,
[PLANOUTLINESTEPDIMID] [int] NULL,
[PROSPECTPLANSTATUSDIMID] [int] NULL,
[FUNDINGREQUESTDIMID] [int] NULL,
[FUNDINGREQUESTOUTLINESTEPDIMID] [int] NULL,
[INTERACTIONLOOKUPID] [nvarchar] (100) NULL,
[INTERACTIONOBJECTIVE] [nvarchar] (100) NULL,
[ISINCLUDED] [bit] NULL,
[ETLCONTROLID] [int] NULL,
[SOURCEDIMID] [int] NULL,
CONSTRAINT [PK_FACT INTERACTION] PRIMARY KEY CLUSTERED
(
[INTERACTIONFACTID] ASC
)WITH (PAD INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE DUP KEY = OFF, ALLOW ROW LOCKS = ON, ALLOW PAGE LOCKS =
ON) ON [BBRPT FACTGROUP]
) ON [BBRPT FACTGROUP]

Firstly, we already havea FACT INTERACTION table, so we need to change that name. And we don't need the contents of the WITH clause. But we
should leave the CONSTRAINT but change the name. and the ON for the fact group. Let's also reformat those keywords to lower-case since that is how
the rest of our Transact-SQL looks. As for the columns:

e Add the columns for actual start datetime and actual end datetime.

e Change INTERACTIONFACTIDand INTERACTIONSYSTEMIDto INTERACTIONACTUALTIMESFACTIDand INTER-
ACTIONACTUALTIMESSYSTEMID.

e Retain ISINCLUDED, ETLCONTROLID, and SOURCEDIMID.
e Remove all other fields.

<DBRevision ID="10">
<ExecuteSgl>

107 CHAPTER 7

<! [CDATA[

create table [BBDW].[FACT INTERACTIONACTUALTIMES EXT] (
[INTERACTIONACTUALTIMESFACTID] [int] IDENTITY (1, 1) not null,

INTERACTIONACTUALTIMESSYSTEMID] [uniqueidentifier] null,
ACTUALSTARTDATETIME] [datetime] null,
ACTUALSTARTDATEDIMID] [int] null,
ACTUALENDDATETIME] [datetime] null,
ACTUALENDDATEDIMID] [int] null,
ISINCLUDED] [bit] null,
ETLCONTROLID] [int] null,
SOURCEDIMID] [int] null,
constraint [PK FACT INTERACTIONACTUALTIMES EXT] primary key clustered ([INTERACTIONACTUALTIMESFACTID] asc)

) on [BBRPT_ FACTGROUP]

[
[
[
[
[
[
[
[

11>
</ExecuteSql>
</DBRevision>

Drop and Create Indexes Revision for Extension Table

There should be nonclustered indexes on the date dimension columns. These need to be dropped and added as a part of the ETL process. This creates a
stored procedure for that.

<DBRevision ID="15">
<ExecuteSqgl>
<! [CDATA[
create procedure [BBDW].[CREATE OR DROP FACT INTERACTIONACTUALTIMES EXT INDICES] QCREATE OR DROP bit --1 to create, 0 to
drop.
as
set nocount on;

if @CREATE OR DROP is null

raiserror (
'@CREATEioRiDROP must be 1 or 0 in [BBDW] . [CREATE OR DROP FACT INTERACTIONACTUALTIMES EXT INDICES]',

le6,
10
)i

if @CREATE OR DROP = 1
begin

REPORTING OFF THE WAREHOUSE

108

—-—-create
if [BBDW].[UFN_INDEXEXISTS] ('IX FACT INTERACTIONACTUALTIMES EXT ACTUALSTARTDATETIMEDIMID') = 0
create nonclustered index [IX FACT INTERACTIONACTUALTIMES EXT ACTUALSTARTDATETIMEDIMID] on [BBDW].[FACT INTER-
ACTIONACTUALTIMES EXT] ([ACTUALSTARTDATEDIMID]) on [BBRPT DIMIDXGROUP]

if [BBDW].[UFN_ INDEXEXISTS] ('IX FACT INTERACTIONACTUALTIMES EXT ACTUALENDDATETIMEDIMID') = 0
create nonclustered index [IX FACT INTERACTIONACTUALTIMES EXT ACTUALENDDATETIMEDIMID] on [BBDW].[FACT INTER-
ACTIONACTUALTIMES EXT] ([ACTUALENDDATEDIMID]) on [BBRPT DIMIDXGROUP]

end
else
begin
—-drop
if [BBDW].[UFN_INDEXEXISTS]('IX_FACT_INTERACTIONACTUALTIMES_EXT_ACTUALSTARTDATETIMEDIMID') =1
drop index [IX FACT INTERACTIONACTUALTIMES EXT ACTUALSTARTDATETIMEDIMID] on [BBDW].[FACT INTERACTIONACTUALTIMES EXT];
if [BBDW] . [UFN_INDEXEXISTS] ('IX FACT INTERACTIONACTUALTIMES EXT ACTUALENDDATETIMEDIMID') = 1
drop index [IX_FACT_INTERACTIONACTUALTIMES_EXT_ACTUALENDDATETIMEDIMID] on [BBDW}.[FACT_INTERACTIONACTUALTIMES_EXT];
end
11>
</ExecuteSqgl>
</DBRevision>

CREATE TABLE Revision for Staging Table

<DBRevision ID="20">
<ExecuteSqgl>
<! [CDATA[
create table [BBDW].[FACT_INTERACTIONACTUALTIMES_EXT_STAGE] (
[INTERACTIONACTUALTIMESSYSTEMID] [uniqueidentifier] null,
[ACTUALSTARTDATETIME] [datetime] null,
[ACTUALSTARTDATEDIMID] [int] null,
[ACTUALENDDATETIME] [datetime] null,
[ACTUALENDDATEDIMID] [int] null,
[ISINCLUDED] [bit] null,
[ETLCONTROLID] [int] null,
[SOURCEDIMID] [int] null

The staging table has the same columns. Copy the revision for the main table and change the DBRevision IDand add STAGE where the table name
is used. This includes the constraint.

109 CHAPTER 7

) on [BBRPT_ STAGEGROUP]
11>
</ExecuteSql>
</DBRevision>

Drop and Create Indexes Revision for Staging Table

There should be an indexon the INTERACTIONACTUALTIMESSYSTEMID. These need to be dropped and added as a part of the ETL process. This
creates a stored procedure for that.

<DBRevision ID="25">
<ExecuteSqgl>
<! [CDATA[
create procedure [BBDW].[CREATE OR DROP FACT INTERACTIONACTUALTIMES EXT STAGE INDICES] @CREATE OR DROP bit --1 to
create, 0 to drop.
as
set nocount on;

if @CREATE OR DROP is null

raiserror (
'@CREATEioRiDROP must be 1 or 0 in [BBDW] . [CREATE OR DROP FACT INTERACTIONACTUALTIMES EXT STAGE INDICES]',

16,
10
)i
if @CREATE OR DROP = 1
begin
—-—create
if [BBDW].[UFN INDEXEXISTS] ('IX FACT INTERACTIONACTUALTIMES EXT STAGE INTERACTIONACTUALTIMESSYSTEMID') = 0
create nonclustered index [IX FACT INTERACTIONACTUALTIMES EXT STAGE INTERACTIONACTUALTIMESSYSTEMID] on [BBDW].[FACT
INTERACTIONACTUALTIMES EXT STAGE] ([INTERACTIONACTUALTIMESSYSTEMID]) on [BBRPT STAGEGROUP]
end
else
begin
—--drop
if [BBDW].[UFN_INDEXEXISTS] ('IX FACT INTERACTIONACTUALTIMES EXT STAGE INTERACTIONACTUALTIMESSYSTEMID') = 1

drop index [IX FACT INTERACTIONACTUALTIMES EXT STAGE INTERACTIONACTUALTIMESSYSTEMID] on [BBDW].[FACT INTER-

ACTIONACTUALTIMES EXT STAGE];
end

REPORTING OFF THE WAREHOUSE 110

11>
</ExecuteSql>
</DBRevision>

Truncate Tables and Drop Indexes Revision

<DBRevision ID="30">
<ExecuteSgl>
<! [CDATA[
alter procedure BBDW. [RESETETL EXT]
as

set nocount on;

truncate table BBDW. [FACT INTERACTIONACTUALTIMES EXT];

exec BBDW. [CREATE OR DROP_FACT INTERACTIONACTUALTIMES EXT INDICES] 0;
truncate table BBDW. [FACT INTERACTIONACTUALTIMES EXT STAGE];

exec BBDW.[CREATE_OR_DROP_FACT_INTERACTIONACTUALTIMES_EXT_STAGE_INDICES] 0;
11>
</ExecuteSqgl>
</DBRevision>

CREATE VIEW Revision

Since the data warehouse creates a star schema using views, it is helpful to add a view to support that.

<DBRevision ID="35">
<ExecuteSqgl>
<! [CDATA[

create view [BBDW].[V_FACT_INTERACTIONACTUALTIMES_EXT]
as
select [BBDW].[FACT INTERACTIONACTUALTIMES EXT].[INTERACTIONACTUALTIMESFACTID],

[[FACTilNTERACTIONACTUALTIMESiEXT}.[INTERACTIONACTUALTIMESSYSTEMID},
[BBDW].[FACT_INTERACTION].[CONSTITUENTDIMID],
[[

FACT_INTERACTION] . [CONSTITUENTSYSTEMID],

111 CHAPTER 7

[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .
[BBDW] .

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

from [BBDW].[FACT INTERACTION]

left join [BBDW].[FACT INTERACTIONACTUALTIMES EXT] on [BBDW].[FACT INTERACTION].[INTERACTIONSYSTEMID]

FACT INTERACTION] .
FACT_INTERACTION] .
FACT INTERACTION].
FACT INTERACTION] .
FACT INTERACTIONACTUALTIMES EXT].[ACTUALSTARTDATETIME],
FACT INTERACTIONACTUALTIMES EXT].[ACTUALSTARTDATEDIMID],
FACT INTERACTIONACTUALTIMES EXT].[ACTUALENDDATETIME],

FACT INTERACTIONACTUALTIMES EXT].[ACTUALENDDATEDIMID],

FACT INTERACTION] .
FACT_INTERACTION] .
FACT INTERACTION].
FACT INTERACTION] .
FACT INTERACTION] .
FACT_INTERACTION] .
FACT INTERACTION].
FACT INTERACTION] .
[FACT INTERACTION].

[FUNDRAISERDIMID],
[FUNDRAISERSYSTEMID],
[INTERACTIONDATEDIMID],
[INTERACTIONDATE],

[INTERACTIONDIMID],

[EVENTDIMID],
[PROSPECTPLANDIMID],
[PLANOUTLINESTEPDIMID],
[PROSPECTPLANSTATUSDIMID],
[FUNDINGREQUESTDIMID],
[FUNDINGREQUESTOUTLINESTEPDIMID],
[INTERACTIONLOOKUPID],

[INTERACTIONOBJECTIVE]

INTERACTIONACTUALTIMES EXT] . [INTERACTIONACTUALTIMESSYSTEMID]

11>

</ExecuteSql>

</DBRevision>

Map Source to Target Revision

This revision adds MS Description comments to the table.

<DBRevision ID="40">

<ExecuteSgl>
<! [CDATA[
exec BBDW.USP SCHEMA TABLE SETTABLECOMMENT 'FACT INTERACTIONACTUALTIMES EXT',
'The Interaction Actual Times fact contains actual start and end datetimes for interactions.

[BBDW] . [FACT _

The table can be joined to the Interaction fact which relates information to constituent interactions.
The v_FACT INTERACTIONACTUALTIMES EXT view does this.';

exec BBDW.USP SCHEMA TABLE SETCOLUMNCOMMENT 'MS Description',
'FACT INTERACTIONACTUALTIMES EXT',
' INTERACTIONACTUALTIMESFACTID',

REPORTING OFF THE WAREHOUSE 112

'Surrogate key for Interaction fact.';

exec BBDW.USP SCHEMA TABLE SETCOLUMNCOMMENT 'MS Description',
'FACT INTERACTIONACTUALTIMES EXT',
' INTERACTIONACTUALTIMESSYSTEMID',
'dbo. [INTERACTION] . [INTERACTIONID]';

exec BBDW.USP SCHEMA TABLE SETCOLUMNCOMMENT 'MS Description',
'FACT INTERACTIONACTUALTIMES EXT',
'ACTUALSTARTDATETIME',
'dbo. [INTERACTION] . [ACTUALSTARTDATETIME] ';

exec BBDW.USP_ SCHEMA TABLE SETCOLUMNCOMMENT 'MS Description',
'FACT INTERACTIONACTUALTIMES EXT',
'ACTUALENDDATETIME',
'dbo. [INTERACTION] . [ACTUALENDDATETIME] ';

exec BBDW.USP_SCHEMA TABLE SETCOLUMNCOMMENT 'MS Description',
'FACT INTERACTIONACTUALTIMES EXT',
'ISINCLUDED',
'Flag indicating when data should be included in results.';

exec BBDW.USP SCHEMA TABLE SETCOLUMNCOMMENT 'MS Description',
'FACT INTERACTIONACTUALTIMES EXT',
'ETLCONTROLID',
'ID generated through the ETL process';

exec BBDW.USP SCHEMA TABLE SETCOLUMNCOMMENT 'MS Description',
'FACT INTERACTIONACTUALTIMES EXT',
' SOURCEDIMID',
'Source system used';

11>
</ExecuteSql>
</DBRevision>

Create the Project and Compile the Revisions to a DLL

If you don't already have a project for revisions extensions, create one.

113 CHAPTER 7

Create the ETL for the New Table

1. Open Business Intelligence Development Studio.

2. Openthetemplate DTSX file, BBDW FACT TEMPLATE.

a. Click File > Open > File.

b. BrowsetoC:\Program Files\Blackbaud\bbappfx\MSBuild\Datamarts\BBDW\SSIS\BBDW FACT TEM-
PLATE.dtsx.

Note: The location may be different for your installation.

c. Click Open.

3. Saveacopyinthe Extend\SSIS folder.

a. Click File > Save Copy of BBDW_FACT_TEMPLATE.dtsx As...

b. The Save Copy of Package screen appears.

c. From Package location, select File System.

d. Click the ellipses button next to the field for Package path. The Save Package To File screen appears.

e. BrowsetoC:\Program Files\Blackbaud\bbappfx\MSBuild\Datamarts\BBDW\Extend\SSIS.
Note: The location may be different for your installation.

f. Change the name to BBDW FACT INTERACTIONACTUALTIMES EXT.

g. Click Save.

4. Change the Truncate Staging task.

REPORTING OFF THE WAREHOUSE 114

On the Control Flow tab for the package designer, double-click the Truncate Staging task in the Load Rows sequence. The Execute SQL Task Editor
screen appears.

From General > SQL Statement > SQLStatement, change the query to:

truncate table BBDW. [FACT INTERACTIONACTUALTIMES EXT STAGE];

exec BBDW.[CREATE OR DROP_FACT INTERACTIONACTUALTIMES EXT STAGE INDICES] 0;
Click OK.
Change the Load Changed Rows task.

Note: If you see ared x, it may be because the Connection Mangers are not configured for your databases. To fix, this click the BBETL DB
CONN DWand BBETL DB CONN OLTP connection managers on the Connection Managers tab and reconfigure them.

a. On the Control Flow tab for the package designer, double-click the Load Changed Rows task. The Data Flow appears.
Double-click New and changed rows from OLTP. The OLE DB Source Editor appears.

Change the SQL command text to:

select
i.[ID] as [INTERACTIONACTUALTIMESSYSTEMID],
i.[ACTUALSTARTDATETIME] as [ACTUALSTARTDATETIME],
i.[ACTUALENDDATETIME] as [ACTUALENDDATETIME],
1 as [ISINCLUDED]

from dbo. [INTERACTION] as i

where (i. [DATECHANGED] > ? and i.[DATECHANGED] <= ?)

b. Double-click the Date Dims Data Flow Component. The Restore Invalid Column References Editor appears.
Remove all of the invalid references and click OK.
Double-click the Date Dims Data Flow Component again. The Derived Column Transformation Editor appears.

Copy the Expression in the grid:

115 CHAPTER 7

ISNULL (INTERACTIONRESPONSEDATE) ? O : YEAR(INTERACTIONRESPONSEDATE) * 10000 + MONTH (INTER-
ACTIONRESPONSEDATE) * 100 + DAY (INTERACTIONRESPONSEDATE)

Add two new derived columns:

ACTUALSTARTDATEDIMID

ACTUALENDDATEDIMID

Adjust the expression you copied for each of these and paste the revised expressions into the Expression fields.

ISNULL (ACTUALSTARTDATETIME) ? O : YEAR(ACTUALSTARTDATETIME) * 10000 + MONTH (ACTUALSTARTDATETIME) * 100 +
DAY (ACTUALSTARTDATETIME)

ISNULL (ACTUALENDDATETIME) ? 0 : YEAR(ACTUALENDDATETIME) * 10000 + MONTH (ACTUALENDDATETIME) * 100 + DAY
(ACTUALENDDATETIME)

¢. Remove the Check Dates Data Flow Component. Click Check Dates and press Delete.
d. Remove the Lookup Response Data Flow Component. Click Lookup Response and press Delete.

e. Remove the invalid column references in Stage Rows from the template.
Double-click the Stage Rows Data Flow Component. The Restore Invalid Column References Editor screen appears.

Delete the template columns. Select all of the rows and from Column mapping option for selected rows, select <Delete invalid column ref-
erence>.

Click OK.
f. Double-click the Stage Rows Data Flow Component again. The OLE DB Destination Editor appears.
Ensurethe BBRETL DB CONN DWW connection manager is selected under OLE DB connection manager.
From Name of the table or the view, select [BBDW] . [FACT INTERACTIONACTUALTIMES EXT STAGE].
Click Mappings. The mapping should be established for every column except INTERACTIONACTUALTIMESFACTID.
Click OK.
g. Save the package.

6. Change the Adding Staging Indices task.

REPORTING OFF THE WAREHOUSE 116

a. Return to the Control Flow tab.

i

Double-click the Adding Staging Indices task.

¢. From General >SQL Statement > SQLStatement, change the query to:

exec BBDW. [CREATE OR DROP FACT INTERACTIONACTUALTIMES EXT STAGE INDICES] 1;

d. Click OK.

Change the Upsert task.

a. Connect Adding Staging Indices task to Upsert task
b. Double-click Upsert. The Execute SQL Task editor screen appears.

c. From General > SQL Statement > SQLStatement, change the query to:

declare @COUNTS table (
[ACTION] wvarchar (28),
[INSERTED] int,
[UPDATED] int
)i

merge BBDW.[FACT_INTERACTIONACTUALTIMES_EXT] as t
using (
select i.[INTERACTIONACTUALTIMESSYSTEMID],
i . [ACTUALSTARTDATETIME],
. [ACTUALSTARTDATEDIMID],
. [ACTUALENDDATETIME],
. [ACTUALENDDATEDIMID],
. [ISINCLUDED],
. [ETLCONTROLID],
. [SOURCEDIMID]
from BBDW. [FACT INTERACTIONACTUALTIMES EXT STAGE] as i
) as s
on (t.[INTERACTIONACTUALTIMESSYSTEMID] = s.[INTERACTIONACTUALTIMESSYSTEMID])

I A

117 CHAPTER 7

when not matched by target
then

insert (
[INTERACTIONACTUALTIMESSYSTEMID],
[ACTUALSTARTDATETIME],
[ACTUALSTARTDATEDIMID],
[ACTUALENDDATETIME],
[ACTUALENDDATEDIMID],
[ISINCLUDED],
[ETLCONTROLID],
[SOURCEDIMID]
)

values (
s. [INTERACTIONACTUALTIMESSYSTEMID],
s. [ACTUALSTARTDATETIME],
s. [ACTUALSTARTDATEDIMID],
s. [ACTUALENDDATETIME],
s. [ACTUALENDDATEDIMID],
s. [ISINCLUDED],
s. [ETLCONTROLID],
s. [SOURCEDIMID]

)

when matched
then
update
set t.[INTERACTIONACTUALTIMESSYSTEMID] = s.[INTERACTIONACTUALTIMESSYSTEMID],
t.[ACTUALSTARTDATETIME] = s.[ACTUALSTARTDATETIME],
t. [ACTUALSTARTDATEDIMID] = s.[ACTUALSTARTDATEDIMID],
t. [ACTUALENDDATEDIMID] = s.[ACTUALENDDATEDIMID],
t.[ISINCLUDED] = s.[ISINCLUDED],
t. [ETLCONTROLID] = s.[ETLCONTROLID],
t.[SOURCEDIMID] = s.[SOURCEDIMID]
output $action,

case
when deleted. [ETLCONTROLID] is null
then 1
else 0
end,
case

when deleted. [ETLCONTROLID] is not null

REPORTING OFF THE WAREHOUSE 118

then 1
else 0
end
into @COUNTS;

select count (*) as [TOTAL],
isnull (sum([INSERTED]), 0) as [INSERTED],

isnull (sum([UPDATED]), 0) as [UPDATED]
from QCOUNTS

d. Click OK.

8. Change the Adding Indices task.

a. Double-click Adding Indices. The Execute SQL Task editor screen appears.

b. From General >SQL Statement > SQLStatement, change the statement to:

exec BBDW. [CREATE OR DROP_FACT INTERACTIONACTUALTIMES EXT INDICES] 1;

9. Adjust the package properties.

a. Go to the Package Explorer tab.

b. Right-click the package and select Properties.

¢. From ID, click the drop-down and select Generate New ID.

d. Changethe nameto BBDW FACT INTERACTIONACTUALTIMES EXT.
e. Save the package file.

10. Copy the package to the SSTsS folder for extensions:
C:\Program Files\Blackbaud\bbappfx\MSBuild\Datamarts\BBDW\Extend\SSIS
11. Update the package manifest (BBDW PackageList EXT.txt):

C:\Program Files\Blackbaud\bbappfx\MSBuild\Datamarts\BBDW\Extend\SSIS

119 CHAPTER 7

"Enabled", "Package"
"1","BBDW FACT INTERACTIONACTUALTIMES EXT.dtsx"

Deploy and Refresh the Warehouse

For information about how to deploy and refresh the warehouse, see the online guides at Blackbaud Data Warehouse.

Change the Report

As discussed in Creating a Data Warehouse Version on page 100, the query on which the report relies can follow the same structure as the transactional
database version. The difference here is the data warehouse version queries the a view created through data warehouse extensions and the stored pro-
cedures used by the RDL dataset are created through these revisions instead of a through the Report Spec.

Creating Another Data Warehouse Version

The goal of this version is to migrate the granularity logic in the stored procedures for the other versions of the report from the stored procedures to the
ETL process. The load step in the SSIS packages look similar to the common table expressions in the OLTP version of the stored procedure for the report.
What follows is the Transact-SQL for the load step for the stage occurrence package. The SSIS package will convert the data gathered from this query into
rows for new tables defined in a set of data warehouse revisions extensions.

with [STEPS]
as (
select row number () over (
order by i.[PROSPECTPLANID],
i. [ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],
i.[ACTUALSTARTDATETIME],
i. [ACTUALENDDATETIME],
i. [PROSPECTPLANID],
max (i.[ACTUALENDDATETIME]) over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i. [PROSPECTPLANSTATUSCODEID]
from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1

https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/welcomebbdwsdk.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/welcomebbdwsdk.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/welcomebbdwsdk.htm

REPORTING OFF THE WAREHOUSE 120

),

[STAGEOCCURRENCESFIRSTPASS]

as (

select s.[ACTUALSTARTDATETIME],
. [ACTUALENDDATETIME] ,
. [PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
. [PROSPECTPLANSTATUSCODEID],
. [PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
. [PROSPECTPLANID],
s. [LASTSTEPINPLANENDDATETIME]
from [STEPS] as s
left join [STEPS] as t on s.[ALLSTEPSEQUENCENUMBER] + 1 t. [ALLSTEPSEQUENCENUMBER]
left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.[ALLSTEPSEQUENCENUMBER]
) s

n B 0O K8 W

[STAGEOCCURRENCES]

as (

select

select row number () over (
order by sofp.[PROSPECTPLANID],
sofp. [ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],
sofp. [ACTUALSTARTDATETIME],
sofp. [ACTUALENDDATETIME],
sofp. [LASTSTEPINPLANENDDATETIME],
sofp. [PROSPECTPLANID],
sofp. [PROSPECTPLANSTATUSCODEID],
pl. [PROSPECTPLANTYPECODEID],
pl. [PROSPECTID]
from [STAGEOCCURRENCESFIRSTPASS] as sofp
inner join [PROSPECTPLAN] pl on sofp.[PROSPECTPLANID] = pl.[ID]
where sofp.[PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]
or (
(sofp. [PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)
)
sol. [ACTUALSTARTDATETIME] as [STARTDATETIME],
sol. [ACTUALENDDATETIME] as [ENDDATETIME],
"STAGEOCCURRENCEDURATION" = case
when sol.[ACTUALENDDATETIME] <> sol.[LASTSTEPINPLANENDDATETIME]
then so2. [ACTUALSTARTDATETIME] - sol.[ACTUALSTARTDATETIME]
when sol. [ACTUALENDDATETIME] = sol.[LASTSTEPINPLANENDDATETIME]

121 CHAPTER 7

then sol. [ACTUALENDDATETIME] - sol.[ACTUALSTARTDATETIME]

end,
sol. [PROSPECTPLANID] as [PROSPECTPLANSYSTEMID],
sol. [PROSPECTPLANSTATUSCODEID] as [PROSPECTPLANSTATUSSYSTEMID],
sol. [PROSPECTPLANTYPECODEID] as [PROSPECTPLANTYPESYSTEMID],
sol. [PROSPECTID] as [CONSTITUENTSYSTEMID],

1 as ISINCLUDED
from [STAGEOCCURRENCES] as sol
left join [STAGEOCCURRENCES] as so2 on sol.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so02.ALLSTAGEOCCURRENCESSEQUENCENUMBER

Extending the Data Warehouse with New Tables and Views

The goal of these extensions is to create structures which represent prospect plan stages and prospect plan stage occurrences. The overlapping per-
spective and the nonconsecutive perspective aggregates can be calculated from a table which contains rows which each represent a stage in a prospect
plan. The consecutive perspective aggregates can be calculated from a table which contains rows which each represent a stage occurrence. Each row
should include duration information for the perspectives in addition to the start and end times and dimension IDs for prospect plans and constituents.

Note: It is possible to implement the stored procedures for the reports through revisions also. The sample implements them from the Report Spec. The
deciding factor was the ability to update the stored procedure through loading the spec as opposed to deploying the data warehouse. However, load-
ing the stored procedures through revisions would overcome the issue caused when the spec loading mechanism overrides the data source defined in
the RDL file. So if you want to use data sets with different data sources in your RDL file, loading the stored procedures accessed by those data sets
through revisions is a way to avoid configuring the data sources in Reporting Services after loading the spec.

Create Table Revision for Stage Occurrence (used by Consecutive Perspective)

<DBRevision ID="10">
<ExecuteSqgl>
<! [CDATA[
create table [BBDW].[FACT PROSPECTPLANSTAGEOCCURRENCE EXT] (
[PROSPECTPLANSTAGEOCCURRENCEFACTID] [int] IDENTITY (1, 1) not null,
[STARTDATETIME] [datetime] null,
[STARTDATEDIMID] [int] null,
[ENDDATETIME] [datetime] null,
[ENDDATEDIMID] [int] null,
[STAGEOCCURRENCEDURATION] [datetime] null,

REPORTING OFF THE WAREHOUSE 122

[PROSPECTPLANSYSTEMID] [uniqueidentifier] null,
[PROSPECTPLANDIMID] [int] null,
[CONSTITUENTSYSTEMID] [uniqueidentifier] null,
[CONSTITUENTDIMID] [int] null,
[PROSPECTPLANTYPESYSTEMID] [uniqueidentifier] null,
[PROSPECTPLANSTATUSSYSTEMID] [uniqueidentifier] null,
[PROSPECTPLANSTATUSDIMID] [int] null,
[ISINCLUDED] [bit] null,
[ETLCONTROLID] [int] null,
[SOURCEDIMID] [int] null,
constraint [PK_FACT PROSPECTPLANSTAGEOCCURRENCE EXT] primary key clustered ([PROSPECTPLANSTAGEOCCURRENCEFACTID] asc)
) on [BBRPT FACTGROUP]
11>
</ExecuteSql>
</DBRevision>

Create Table Revision for Stage (used by Overlapping and Nonconsecutive Perspectives)

<DBRevision ID="15">
<ExecuteSqgl>
<! [CDATA[
create table [BBDW].[FACTiPROSPECTPLANSTAGEiEXTJ (
[PROSPECTPLANSTAGEFACTID] [int] IDENTITY (1, 1) not null,
[STARTDATETIME] [datetime] null,
[STARTDATEDIMID] [int] null,
[ENDDATETIME] [datetime] null,
[ENDDATEDIMID] [int] null,
[STAGEDURATIONOVERLAPPING] [datetime] null,
[STAGEDURATIONNONCONSECUTIVE] [datetime] null,
[PROSPECTPLANSYSTEMID] [uniqueidentifier] null,
[PROSPECTPLANDIMID] [int] null,
[CONSTITUENTSYSTEMID] [uniqueidentifier] null,
[CONSTITUENTDIMID] [int] null,
[PROSPECTPLANTYPESYSTEMID] [uniqueidentifier] null,
[PROSPECTPLANSTATUSSYSTEMID] [uniqueidentifier] null,
[PROSPECTPLANSTATUSDIMID] [int] null,
[ISINCLUDED] [bit] null,
[ETLCONTROLID] [int] null,
[SOURCEDIMID] [int] null,

123 CHAPTER 7

constraint [PK FACT PROSPECTPLANSTAGE EXT] primary key clustered ([PROSPECTPLANSTAGEFACTID] asc)
) on [BBRPT FACTGROUP]
11>

Other Items to Support the Stage and Stage Occurrence Tables

As with other data warehouse revisions which create tables, there should be a staging table, stored procedures for indexes, table truncation, and MS_
Description comments for mapping. The revisions file should include each of these. Also, a view of each table is desirable.

But the bulk of the work comes with the SSIS packages to perform the ETL. The ETL process for these tables will be more complex than with the previous
example. This is because the stage and stage occurrence tables have rows which are based on multiple rows in the Interaction table in the OLTP database.
For the previous versions of the report in this document, these transformations were performed by the stored procedures used by the report. The idea
behind these extensions is to transfer that workload for the report's stored procedures to the ETL process. The report stored procedures will then be sim-
plified to calculating the aggregates and not performing the prerequisite transformations of the Interaction table.

Fortunately, we have already worked through this logic in the course of building the previous report version's stored procedures. So to create the
SSIS packages for the Stage and Stage Occurrence tables, we can transfer that logic to the SSIS packages.

REPORTING OFF THE WAREHOUSE

124

BBDW_FACT_PROSPECTPLANSTAGEOCCURRENCE_
EXT.dtsx

Here are is selected information from the ETL for the stage occurrence table:

Truncate Staging SQLStatement

truncate table BBDW. [FACT PROSPECTPLANSTAGEOCCURRENCE EXT STAGE];

exec BBDW. [CREATE OR DROP_FACT PROSPECTPLANSTAGEOCCURRENCE EXT STAGE INDICES] O;

New and Changed Rows from OLTP SQL command text

with [STEPS]
as (
select row number () over (
order by i.[PROSPECTPLANID],
i.[ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],
i.[ACTUALSTARTDATETIME],
i. [ACTUALENDDATETIME],
i.[PROSPECTPLANID],
max (1. [ACTUALENDDATETIME])
over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i. [PROSPECTPLANSTATUSCODEID]
from [INTERACTION] as 1
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1
) 4
[STAGEOCCURRENCESFIRSTPASS]
as (
select s.[ACTUALSTARTDATETIME],
. [ACTUALENDDATETIME],
. [PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
. [PROSPECTPLANSTATUSCODEID],
. [PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
. [PROSPECTPLANID],
s. [LASTSTEPINPLANENDDATETIME]
from [STEPS] as s
left join [STEPS] as t on s.[ALLSTEPSEQUENCENUMBER] + 1
STEPSEQUENCENUMBER]
left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.
[ALLSTEPSEQUENCENUMBER]
) 4
[STAGEOCCURRENCES]
as (

n K 0 B 0

t.[ALL-

select row number () over (
order by sofp.[PROSPECTPLANID],
sofp. [ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],
sofp. [ACTUALSTARTDATETIME],
sofp. [ACTUALENDDATETIME],
sofp. [LASTSTEPINPLANENDDATETIME],

125 CHAPTER 7

sofp. [PROSPECTPLANID],
sofp. [PROSPECTPLANSTATUSCODEID],
pl. [PROSPECTPLANTYPECODEID],
pl. [PROSPECTID]
from [STAGEOCCURRENCESFIRSTPASS] as sofp
inner join [PROSPECTPLAN] pl on sofp.[PROSPECTPLANID] = pl.[ID]
where sofp. [PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]
or (
(sofp. [PROSPECTPLANSTATUSCODEID] <> sofp.[PRE-
VIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)
)
select sol.[ACTUALSTARTDATETIME] as [STARTDATETIME],
sol. [ACTUALENDDATETIME] as [ENDDATETIME],
"STAGEOCCURRENCEDURATION" = case
when sol. [ACTUALENDDATETIME] <> sol.[LASTSTEPINPLANENDDATETIME]
then so2. [ACTUALSTARTDATETIME] - sol.[ACTUALSTARTDATETIME]
when sol. [ACTUALENDDATETIME] = sol.[LASTSTEPINPLANENDDATETIME]
then sol. [ACTUALENDDATETIME] - sol.[ACTUALSTARTDATETIME]
end,
sol. [PROSPECTPLANID] as [PROSPECTPLANSYSTEMID],
sol. [PROSPECTPLANSTATUSCODEID] as [PROSPECTPLANSTATUSSYSTEMID],
sol. [PROSPECTPLANTYPECODEID] as [PROSPECTPLANTYPESYSTEMID],
sol. [PROSPECTID] as [CONSTITUENTSYSTEMID],
1 as ISINCLUDED
from [STAGEOCCURRENCES] as sol
left join [STAGEOCCURRENCES] as so2
on sol.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so02.A-
LLSTAGEOCCURRENCESSEQUENCENUMBER

Date Dims

ISNULL (STARTDATETIME) ? 0 : YEAR(STARTDATETIME) * 10000 + MONTH (STARTDATETIME) *
100 + DAY (STARTDATETIME)

ISNULL (ENDDATETIME) ? O : YEAR(ENDDATETIME) * 10000 + MONTH (ENDDATETIME) * 100 +
DAY (ENDDATETIME)

Lookup Prospect Plan

select [PROSPECTPLANDIMID], [PROSPECTPLANSYSTEMID] from [BBDW].[DIM PROS-
PECTPLAN]

REPORTING OFF THE WAREHOUSE 126

-
" Lookup Transformation Editer o e———— ==

This transform enables the perfermance of simple equi-joins between the input and a reference data set.

General

Connection Available Input Columns

Name -

Atk ¢ STAGEOCCURRENCEDURATION | [|

Error Output ;
STARTDATETIME Available Lookup Columns
ENDDATETIME [@ Name

PROSPECTPLANSYSTEMID
PROSPECTPLANSTATUSSYSTEMID
PROSPECTPLANTYPESYSTEMID
CONSTITUENTSYSTEMID —!

: PROSPECTPLANDIMID

|] PROSPECTPLANSYSTEMID

/,

ISINCLUDED
ETLCONTROLID
| SOURCEDIMID ™ |
| Lookup Column Lookup Operation Output Alias
: PROSPECTPLANDIMID <add as new column> PROSPECTPLAMNDIMID

[0K] l Cancel l l Help

Lookup Prospect Plan Status

select [PROSPECTPLANSTATUSDIMID], [PROSPECTPLANSTATUSSYSTEMID] from [BBDW].[DIM
PROSPECTPLANSTATUS]

127 CHAPTER 7

- ™
" Lookup Transformation Editer G ——— E@g

This transform enables the perfermance of simple equi-joins between the input and a reference data set.

General
Connection Available Input Columns
| l Name B
Advanced

STAGEOCCURRENCEDURATION B
Error Output f i

| STARTDATETIME
ENDDATETIME
PROSPECTPLANSYSTEMID
PROSPECTPLANSTATUSSYSTEMID
PROSPECTPLANTYPESYSTEMID
CONSTITUENTSYSTEMID
ISINCLUDED
ETLCONTROLID

| SOURCEDIMID Bd

Available Lookup Columns

Name

 [v] ; PROSPECTPLANSTATUSDIMID
——{ "1 PROSPECTPLANSTATUSSYSTEMID

| Lookup Column Lookup Operation Output Alias

i PROSPECTPLANSTATUSDIMID <add as new column PROSPECTPLANSTATUSDIMID

[oK] l Cancel l l Help

Lookup Prospect

select [CONSTITUENTDIMID], [CONSTITUENTSYSTEMID] from [BBDW].[DIM PROSPECT]

REPORTING OFF THE WAREHOUSE 128

-
" Lookup Transformation Editer b e ——— —e

This transform enables the performance of simple equi-joins between the input and a reference data set.

General
Connection Available Input Columns

| Name 7
Pidyesiced STAGEOCCURRENCEDURATION | |
Error Output i

STARTDATETIME
ENDDATETIME
PROSPECTPLANSYSTEMID

ilable Lockup Columns
Name

 [¥] ; CONSTITUENTDIMID
PROSPECTPLANSTATUSSYSTEMID “E1” CONSTITUENTSYSTEMID
PROSPECTPLANTYPESYSTEMID / '
CONSTITUENTSYSTEMID L

ISINCLUDED
ETLCONTROLID
| SOURCEDIMID 84

Lockup Column Lookup Operation Output Alias

i COMNSTITUENTDIMID <add as new column COMSTITUENTDIMID

[oK] l Cancel l l Help

Stage Rows

129 CHAPTER 7

ff OLE DB Destination Editor 0 - =L
Configure the properties used to insert data into a relational database using an OLE DB provider.
Connection Manager
o[Available Input Columns Available Destination Columns
Error Output Name Name =
: STAGEOCCURRENCEDURATION : ISINCLUDED F
| STARTDATETIME ETLCONTROLID
ENDDATETIME SOURCEDIMID
PROSPECTPLANSYSTEMID STARTDATETIME
PROSPECTPLANSTATUSSYSTEMID ENDDATETIME
PROSPECTPLANTYPESYSTEMID PROSPECTPLANDIMID
CONSTITUENTSYSTEMID CONSTITUENTDIMID 3
ISINCLUDED CONSTITUENTSYSTEMID
ETLCONTROLID PROSPECTPLANSTATU...
SOURCEDIMID STAGEOCCURRENCED...
STARTDATEDIMID PROSPECTPLANSYSTE...
ENDDATEDIMID PROSPECTPLANTYPES...
PROSPECTPLANDIMID PROSPECTPLANSTATU...
PROSPECTPLANSTATUSDIMID STARTDATEDIMID
CONSTITUENTDIMID ENDDATEDIMID -
Input Calumn Destination Column
ISINCLUDED ISINCLUDED
| ETLCONTROLID ETLCOMTROLID
SOURCEDIMID SOURCEDIMID
STARTDATETIME STARTDATETIME
ENDDATETIME EMDDATETIME
PROSPECTPLANDIMID PROSPECTPLAMNDIMID
CONSTITUENTDIMID CONSTITUENTDIMID
COMNSTITUEMTSYSTEMID CONSTITUENTSYSTEMID
PROSPECTPLAMSTATUSDIMID PROSPECTPLANSTATUSDIMID
STAGEOCCURRENCEDURATION STAGEQCCURREMCEDURATION
PROSPECTPLAMNSYSTEMID PROSPECTPLAMSYSTEMID
PROSPECTPLANTYPESYSTEMID PROSPECTPLANTYPESYSTEMID
PROSPECTPLAMSTATUSSYSTEMID PROSPECTPLAMNSTATUSSYSTEMID
STARTDATEDIMID STARTDATEDIMID
EMNDDATEDIMID ENDDATEDIMID
[0K] l Cancel l l Help

Add Staging Indices

exec BBDW. [CREATE OR DROP FACT PROSPECTPLANSTAGEOCCURRENCE EXT STAGE INDICES] 1;

REPORTING OFF THE WAREHOUSE 130

Upsert

declare @QCOUNTS table (
[ACTION] varchar (28),
[INSERTED] int,
[UPDATED] int
)i

merge BBDW. [FACT PROSPECTPLANSTAGEOCCURRENCE EXT] as t
using (
select p.[STARTDATETIME],
p. [STARTDATEDIMID],
p. [ENDDATETIME],
p. [ENDDATEDIMID],
p. [STAGEOCCURRENCEDURATION],
p. [PROSPECTPLANSYSTEMID],
p. [PROSPECTPLANDIMID],
p. [CONSTITUENTSYSTEMID],
p.[CONSTITUENTDIMID],
p. [PROSPECTPLANTYPESYSTEMID],
p. [PROSPECTPLANSTATUSSYSTEMID],
p. [PROSPECTPLANSTATUSDIMID],
p.[ISINCLUDED],
p. [ETLCONTROLID],
p. [SOURCEDIMID]

from BBDW. [FACT PROSPECTPLANSTAGEOCCURRENCE EXT STAGE] p

) as s
on (t.[STARTDATETIME] = s.[STARTDATETIME])
and (t.[ENDDATETIME] = s.[ENDDATETIME])

and (t.[PROSPECTPLANSTATUSSYSTEMID] = s.[PROSPECTPLANSTATUSSYSTEMID])
and (t.[PROSPECTPLANTYPESYSTEMID] = s.[PROSPECTPLANTYPESYSTEMID])
and (t.[PROSPECTPLANSYSTEMID] = s.[PROSPECTPLANSYSTEMID])

when not matched by target
then

insert (
[STARTDATETIME],
[STARTDATEDIMID],
[ENDDATETIME] ,
[ENDDATEDIMID],
[STAGEOCCURRENCEDURATION],
[PROSPECTPLANSYSTEMID],
[PROSPECTPLANDIMID],
[CONSTITUENTSYSTEMID],
[CONSTITUENTDIMID],
[PROSPECTPLANTYPESYSTEMID],
[PROSPECTPLANSTATUSSYSTEMID],
[PROSPECTPLANSTATUSDIMID],
[ISINCLUDED],
[ETLCONTROLID],
[SOURCEDIMID]
)

values (
s. [STARTDATETIME],
s. [STARTDATEDIMID],
s. [ENDDATETIME],
s. [ENDDATEDIMID],
s. [STAGEOCCURRENCEDURATION],
s. [PROSPECTPLANSYSTEMID],

131 CHAPTER 7

s. [PROSPECTPLANDIMID],
s. [CONSTITUENTSYSTEMID],
s. [CONSTITUENTDIMID],
s. [PROSPECTPLANTYPESYSTEMID] ,
s. [PROSPECTPLANSTATUSSYSTEMID],
s. [PROSPECTPLANSTATUSDIMID],
s. [ISINCLUDED],
s. [ETLCONTROLID],
s. [SOURCEDIMID]
)
when matched
then
update
set t.[STARTDATETIME] = s.[STARTDATETIME],
t.[STARTDATEDIMID] = s.[STARTDATEDIMID],
t. [ENDDATETIME] = s.[ENDDATETIME],
t. [ENDDATEDIMID] = s.[ENDDATEDIMID],
t. [STAGEOCCURRENCEDURATION] = s.[STAGEOCCURRENCEDURATION],
t. [PROSPECTPLANSYSTEMID] = s.[PROSPECTPLANSYSTEMID],
t. [PROSPECTPLANDIMID] = s.[PROSPECTPLANDIMID],
t.[CONSTITUENTSYSTEMID] = s.[CONSTITUENTSYSTEMID],
t.[CONSTITUENTDIMID] = s.[CONSTITUENTDIMID],
t. [PROSPECTPLANTYPESYSTEMID] = s.[PROSPECTPLANTYPESYSTEMID],
t. [PROSPECTPLANSTATUSSYSTEMID] = s.[PROSPECTPLANSTATUSSYSTEMID],
t. [PROSPECTPLANSTATUSDIMID] = s.[PROSPECTPLANSTATUSDIMID],
t.[ISINCLUDED] = s.[ISINCLUDED],
t. [ETLCONTROLID] = s.[ETLCONTROLID],
t. [SOURCEDIMID] = s.[SOURCEDIMID]
output $action,

case
when deleted. [ETLCONTROLID] is null
then 1
else 0
end,
case

when deleted. [ETLCONTROLID] is not null
then 1
else 0
end
into @COUNTS;

select count(*) as [TOTAL],
isnull (sum([INSERTED]), 0) as [INSERTED],

isnull (sum([UPDATED]), 0) as [UPDATED]
from Q@COUNTS

Adding Indices

exec BBDW. [CREATE OR DROP FACT PROSPECTPLANSTAGEOCCURRENCE EXT INDICES] 1;

blackbaud

chapter 0

Appendlx

The following topics are included for your reference:

APPlication FeatUres .. . 132
Create @ RePOIt SPOC ... 141
EXPIONiNg @ ROPOIt SPOC . 142

Application Features

To help surf the sea of features in the system (~20k specs at last count), Blackbaud as created a series of tasks
located inanew Application\Features folder in Administration. These tasks treat our platform idioms
(data forms, data lists, pages, record operations, etc) just like any other 1st-class entity in the system (con-
stituents, interactions, revenue, etc) and allow you to search for an item and go to a page to see details about
that item. We even shine a spotlight on newly added features via the New Features tasks.

This is super-useful if you're a developer wanting to get more information on a feature or see where a given fea-
tureis used. It’s also nice for IT staff to be able to see the features from a low-level perspective and access the
security permissions for the feature.

So when you navigate to Administration>Application> Features, you’ll see the following series of tasks:

133 CHAPTER O

Administration > Application
Gﬁ Features

Record types Features
nll Record type search u Data form search
il Record types u Data list search
4 Mew record types ®. Record operation search

A\ Search list search
i Page search

;::. Query view search
& Smart query search
& Smart field search
af Report search

i Tasksearch

@ <Pl search

#® Dashboard search
w Business process search
il Code table search

a’ Simple data list search

MNew features

Mew data forms

Mew data lists

Mew record operations
B, Mew search lists

MNew pages

Mew query views

Mew smart queries

5B o

Mew smart fields

%4 New reports

7| Mew tasks

@ new kpis

@ new dashboards

& New business processes
i Mew code tables

i Mew simple data lists

Let’s dive into a few of these tasks!

Record Types

The first three tasks in the list allow you to see groups of features from a macro perspective. By using the tasks in
the Record Types group, you can really get an idea of the scale and scope of a particular record type. You can
search for a record type, view the list of record types (usually the “root” record types), or view a list of newly
added record types.

AppenDIX 134

.l Record types
Record types (165 items) EB
Search name:
Page| 1lofd b M &
Name Base table
Account GLACCOUNT
Account Code ACCOUNTCODE
Accounting Element DATAELEMENT
Acknowledgement Segment Me..
Ad-hoc Query ADHOCQUERY
Advocacy
Appeal APPEAL
Appeal Mailing APPEALMAILING
Application User APPUSER
Ask Ladder MKTASKLADDER
Assignment ASSIGNMENT
Auction EVENTAUCTION
Auction ltem AUCTIONITEM
Audit Table
Bank Account BAMKACCOUNT
Bank Account Adjustment BAMKACCOUMNTADJUSTMENT
Bank Account Deposit BAMKACCOUNTDEPOSIT
Bank Account Transaction BAMNKACCOUNTTRAMSACTION
Batch BATCH
Benefit BEMEFIT
Billing Item BILLINGITEM
Billing Transaction
Business Process
Campaign CAMPAIGN
Catalog Item
Class CLASS
Gligat Bosm ERfEasT CLIENTUSERSEXTENSION

| Only root types | #F Apply #F Reset
Default search list Date added
Account Search 71672009
Account Code Search 7/16/2009
Accounting Element Search 6/25/2010
6/3/2011
Ad-hoc Query Search 12/17/2008
8/8/2010
Appeal Search 12/17/2008
12/17/2008
Application User Search 12/17/2008
12/17/2008
3/6/2010
3/6/2010
Auction item search 3/6/2010
12/17/2008
Bank Account Search F16/2009
7/16/2009
Deposit Search 7/16/2009
/16/200%
Batch Type Search 12/17/2008
Benefit Search 12/17/2008
Billing Item Search 3/6/2010
3/22/2010
Business Process Search 12/17/2008
Campaign Search 12/17/2008
1/27/2010
Class Search 3/6/2010
9/29/2010

You can see the features that support the record type and from here drill into the detail page for a given type of

feature.

For example, if you select the Constituent record type, you’ll see just how many features we have that either

require or return records of type Constituent (a lot!):

135 CHAPTER O

.)l Record Type: Constituent

System record ID: ¢7a473e6-d28b-4225-8d05-7d32b1aB19df
Base table name: COMNSTITUENT
Default search lisk Constituent Search
Data Forms Data lists Record Operations Search Lists Queryviews Smart Queries Smart Fields KPIls |
Pages (60 iterns) 2] 4'5‘.*
/4 4 | Page 1of2 b Bl &
Mame Description Authaor Installed
& Affilisted Education Histor_ This page displays the affilate... Blackbaud Product Developm.., @
z Billing Indiadual Page Shows the billing information... Blackbaud Preduct Developm...
“f Committee Fundraising an_ This page shows the Committ.. Blackbaud Product Developm... 7]
&) Committee Member Page This page displays information... Blackbaud Product Developm... @
i Committee Page This page displays information... Blackbaud Preduct Developm... 7

= Communication Preferences Display the constituent comm... Blackbaud Preduct Developm... &
& Community Member Page This page displays information... Blackbaud Product Developm...

*| Constituent Corresponden . This page displays information... Blackbaud Preduct Developm... @

k Constituent Documentatio, This page displays all docume... Blackbaud Product Developm... @
2. Constituent Employment_ This page displays information... Blackbaud Product Developm.., @
L Constituent Funds Receive . This page displays information... Blackbaud Product Developm.., @
2, Constituent Group Membe_ This page displays a constitue... Blackbaud Product Developm... 7]
4 Constituent Histary Page This page displays constituent... Blackbaud Preduct Developm... &
B3 Constituent Interactions P Displays the constituent intera.. Blackbaud Product Developm... @
=4 Constituent Membership P This page displays information... Blackbaud Product Developm... 7]
&Y Constituent Page This page displays infermation... Blackbaud Product Developm... @
% Constituent Profile Page Shows the constituent profile... Blackbaud Product Developm... 6

Constituent Recognition D, Displays a constituent’s recog... Blackbaud Preduct Developm... &
'l Constituent Revenue Infor | This page displays contains gi... Blackbaud Product Developm... 7
B8 Constituent Tribute Report Report of constituents and ass... Blackbaud Product Developm.. &

Features

The tasks in the Features group let you search for the most popular types of features in the system (not all spec
types are represented currently). When you search for and select a feature, you’ll see a page with detailed infor-
mation about the feature itself.

As an example, if you use the Data List Search task and search for the “Contact Information List”, you’ll be taken
to the Data List page. Here you’ll see the most relevant metadata about the list, include the ID, record type,

AppenDIX 136

implementation details, as well as whether or not the feature is installed. You can also see the output fields and
filters, and view which pages and dashboards make use of this list (VERY handy!).

|| Data List: Contact Information List

System record I 5df92861-001a-4b67-800f-d598f3cf334b

Description: This datalist returns all contact information for a constituent.
Author: Blackbaud Product Development

Date added: 1/27/2010 7:17:40 PM

Date changed: 9/21/2011 12:03:33 AM

User defined: Mo

Context record type: Constituent

Implementation: SP (USP_DATALIST_CONTACTINFCORMATION)

Secunty folder: Constituent

Installed products: Enterprnise, BasicDevelopment, ResearchPoint, BlackbaudDirectMarketing, BasicEducation

Installed: @ Yes

Output R Filters Page References Dashboard References API

Output fields [18 items) 2] &
Field ID Caption Data type Hidden Installed products Installed
D D Guid @ &
CONTACTTYPE Contact type String @
CONTACTTYPECODE ContactTypeCode Integer @ &
VIEWFORMID ViewForm String & &
CONTACTINFC Contact information String @
TYPE Type String @
ISPRIMARY Primary String &
DONOTCONTACT Do not contact String @
ISCONFIDENTIAL Confidential Boolean 7 (7]
ISFORMER IsFormer Boolean & &
STARTDATE Start date Date &
ENDDATE End date Date @
ISGEOCODED IsGeocoded Boolean & 7
PENDINGGEOCODE PendingGeocode Boolean 7 &
INVALIDGEOCODE InvalidGeocode Boolean 7] &
MAPCONTEXTID MapContextlD String (7 &
IMAGEKEY ImageKey String 7 &

The APl tab even provides a reference for developers on how to use this data list from a variety of APIs. If you’'re
writing .NET client-side code and want to set a reference to one of our Black-

baud.AppFx.* .WebAPIClient assemblies (which are now being created as part of the build!!) this tab
shows you which assembly contains the wrapper for this feature. You can also see the SOAP and BizOp URLs to

137 CHAPTER O

use to get the data returned by the data list. For more information on choosing the best Infinity Web Service to
suit your needs, see Introduction to the Infinity Web Service APls.

AppenDIX 138

' |_| Data List: Contact Information List

System record IO 5df92861-0013-4b67-800F-d598f95334b

Descripbion: This datalist returns all contact information for a constituent.
Author: Blackbaud Product Development

Date added: 12772000 T:17:40 PM

Date changed: 9/21/2011 12:03:33 AM

User defined: Mo

Context record type: Constituent

Implementation: 5P (USP_DATALIST_CONTACTINFORMATION)

Security folder: Constituent

Installed products: Enterprise, BasicDevelopment, ResearchPoint, BlackbaudDirectMarketing, BasicEducation
Installed: a Yes

Output Fields Filters Page References Dashboard References m
Client-side Web API

Aszembly: Blackbaud.AppFx.Constituent.Catalog. WebApiClient.dll

Mamespace: Blackbaud.AppFxConstituent.Catalog. WebApiClient. Datalists.Constituent
List class: ContactlnformationList

Row data class: ContactinformationListRow

Filter class: ContactinformationListFilterData

Worlkdflow Activity API

Assembly: Blackbaud.AppFx.Constituent.Catalog.Activities.dll
MNamespace: Blackbaud.AppFx.Censtituent.Catalog.Activities. Datalists.Constituent
Load activity: Contactinformationlistload

Filter assign values activity: ContactinformationblistFilterAssignValues

BizOp API

BizOp SOAP Url: http://localhost/bbappf/vpp/bizops/db[BBInfinity]/datalists/5df92861-001a-4b67 -B00f-d598f0cf334b/s0ap.asmx

Data list service

C5V format: http://localhost/bbappfx/util/Datalist.ashx? DatabaseName=BBInfinity& datalistiD = 5df02861-001a-4b67-E00f-
d598f9cf334b&ContextRecordID=CONTEXTRECORDID&format=csv

DataSet format: http://localhost/bbappfu/util/Datalist.ashx?DatabaseName=BBInfinity& datalistiD=5df92861-001a-4b67-800f-
d598fcf334b&ContextRecordID=CONTEXTRECORDID8format=dataset

¥ml format: httpi//localhost/bbappfx/util/Datalist.ashx? DatabaseName=BBInfinity&datalistiD=5df92861-001a-4b67-800f-
d598fcf334b&ContextRecordID=CONTEXTRECORDID &tformat=xmi

Reply format: httpy//flocalhost/bbappfy/util/Datalist.ashx?DatabaseMame=BBInfinity& datalistiD=5df02861-001a-4b67-B00F-
d398f0cf334bAContextRecordID=CONTEXTRECORDID&tformat =reply

139 CHAPTER O

New Features

The tasks in the New Features group spotlight newly added features in the past 30/60/90/etc days. This is very
handy to know if you’re trying to keep track of what’s being added to the system. Note that these lists all sup-
port RSS feeds and notifications, so you can even get toast/email when someone adds a new spec to the system!

For example, here are the record operations that have been added in the past 30 days:

0 Record operations
Mew record operations (B1 items) r_;i 2] ¢.-
Show: !_!_as*.__:ﬁear _i“' Record type: | _IV [Include all products &F Reset
Page ilof2 b bl &2
MName Description Authar Record type Date added Installed
Closed Drawer Ap Approve the close... Blackbaud Product... Reconciliation 9/21/2011 Yes
Closed Drawer Mar... Mark the closed dr... Blackbaud Product... Reconciliation 9/21/2011 Yes
Test RE7 Credentia.. Test credentials to... Blackbaud Product... 9/21/2011 Yes
Test RE7 Connecti.. Test connectivity .. Blackbaud Product... 9/21/2011 Yes
Unsettled Credit C... Remowve an unsettl.. Blackbaud Product... Unsettled Credit C... 9/21/2011 Yes
Mark Credit Card T... Marks the designat.. Blackbaud Product... Credit Card Payme.. 9/21/2011 Yes
Mark Credit Card T... Marks the designat... Blackbaud Product.. Credit Card Payme... 9/21/2011 Yes
Microsite Event On... Approve registere... Blackbaud Product... Event 972172011 Yes
OLAP Role Record... Removes the data... Blackbaud Product... Data Mart 9/21/2011 Yes
System Role Group... Load users from gr... Blackbaud Product... Systermn Role 972172011 Yes
Application User Al... This record operati.. Blackbaud Product... Application User Al... 9/20/2011 Yes
ScheduleHeartbeat... Ensures the sched... Blackbaud Product... Schedule 6/17/2011 Yes
Refreshes an appe.. Blackbaud Preduct... Email List 6/17/2011 Yes
Delete archived ap... Blackbaud Product... Archived Appeal M., 6/17/2011 Yes
Deletes acknowled... Blackbaud Product... Marketing Acknow... 6/17/2011 Yes
Deletes acknowled... Blackbaud Product... Marketing Acknow... 6/17/2011 Yes |

New Ad-hoc Query Views

In addition to creating these pages, We have also created new ad-hoc query views to allow querying over our plat-
form feature metadata. You can now create queries of data forms, data lists, record operations, smart fields, etc
and use the full power of our query tool semantics to mine the features in the system.

For example, want to know which data lists in the system have the most number of output fields? Use the Data
List query and include the COUNT(OutputFields\ID)sorted by the count descending:

Appenpix 140

New Ad-hoc Query 28
R ag il SN GIN ST LAl Set sort and group options Prewview results. Set save options
Find field: X'k FX I+ (+ =)e)=
Browse for fields in: [« Select Data List fields: Include records where:
== Data List 2 Data List Record &
=] Dashboard references
= Filters [Data List record
] Cutput fields = Fields L I
=] Page references & Author

[Context ID is parameter set [D

@ Context parameter name

[Data list spec xmi

[Default image key Xl ¥ E-0

g gtasclription Results fields to display:
isplay name :

[Implementation description @ Diaplay rame

[Implementation type

[Installed 4=

[Installed products list

3 Mame

3 Mame override

[Record type

[Security UI display feature

[Security UI falder

[Skip output schema validation L

e Help Save | | Cancel

141 CHAPTERO

New Ad-hoc Query =68 |
Select filter and output fields Set sort and group options Set save options
Results (2642 records found. Only the first 500 rows are shown.) & Jé @' E]

Display name

System Role Assigned User List

System Role Tasks List

System Role Query View Permissions

Functicnal Areas List

Catalog Browser List

System Roles List

Site List

System Role Code Table Permissions List

Business Process Jab Schedule List

5515 Package Variable List

KPI Instance Value Save Status List

KPI Instance List

KPI Goal Summary Data List

Application User Tasks List

Application User Code Tables List

Application User Batch Type Permissions List

Application User KPI Permissions List

Code Table List

Code Table Entry List e
Page 1of10! b ki

@Help | Save || Cancel |

This suite of functionality should go a long way towards helping you manage the vast amount of features that
make up the system.

Create a Report Spec

To create a new Report Spec, add a new item to your Microsoft Visual Studio solution’s Blackbaud AppFx
project:

1. Right-click the project.

2. Click Add > New item.

w

Select Blackbaud AppFx Catalog as the category of the item.

>

Select Report Spec.

After a Report Spec has been added to the project, you will notice the spec contains a RDLFileName,
Folder,and DataRetrieval element. Within the DataRetrieval element, a stored procedure has
been stubbed out for you in the CreateSQL element. It also attempts to name the report and . rd1 file based
on the filename selected.

ApPENDIX 142

<ReportSpec
xmlns="bb appfx report"
xmlns:common="bb appfx commontypes"
ID="d0d55376-82cb-4176-8268-35910164175f"
Name="FoodBankTransactionTotals Report"
Description="REPLACE WITH DESCRIPTION"
Author="Blackbaud Product Development"
>

<RDLFileName>FoodBankTransactionTotals.rd1l</RDLFileName>
<Folder>System Reports/Misc Reports</Folder>

<DataRetrieval>
<CreateSQL ObjectName="dbo.USP REPORT xxx" ObjectType="SQLStoredProc">
<! [CDATA[
create procedure dbo.USP REPORT xxx
(

<list any report parameters here>
)
as
<build the report SQL here>
11>
</CreateSQL>
</DataRetrieval>

</ReportSpec>

When the Report Spec is loaded, it will create the stored procedure specified in the database as well as load the
. rd1 file specified into Reporting Services.

Exploring a Report Spec

Report Specs are composed of four main elements:

RDLFileName

e Folder

o DataRetrieval
DataSource (optional)

RDLFileName

The RDLF1leName element contains the name of the .rdl file for the report itself. The . rd1 file will be
uploaded to the Report Server when the Report Specis loaded. The . rd1 file itself must also be included in the
same Blackbaud AppFx project as an Embedded Resource.

Note: The Report Designer for . rd1 files is included in the SQL Server install as part of the Business Intelligence
Development Studio for SQL Server 2008 or SQL Server 2008 R2 and is not part of the standard Visual Studio
installation. If your Blackbaud AppFx project is in Visual Studio 2010, you will likely want to create/edit the
report itself in a separate Visual Studio 2008 project and then copy the . rd1 file into the Visual Studio 2010
project.

http://msdn.microsoft.com/en-us/library/cc281390.aspx
http://msdn.microsoft.com/en-us/library/cc281390.aspx
http://msdn.microsoft.com/en-us/library/ms173767.aspx
http://msdn.microsoft.com/en-us/library/ms173767.aspx
http://msdn.microsoft.com/en-us/library/ms173767.aspx
http://msdn.microsoft.com/en-us/library/ms173767.aspx

143 CHAPTER O

SQL Server 2012 includes the Report Designer as part of SQL Server Data Tools and should allow you to create the
Blackbaud AppFx project and the . rd1 file in Visual Studio 2010.

Folder

The Folder element contains the folder that the report will be deployed to on the Reporting Server. This
should be a relative path from Blackbaud\AppFx\<DatabaseName>. Forexample <Folder>Sample
Reports\Food Bank</Folder>would deploy the report to something like Black-
baud\AppFx\BBInfinity\Sample Reports\Food Bank ontheReportServer.

DataRetrieval

The DataRetrieval element can contain one or more CreateSQL elements that are used to either create
Transact-SQL objects or grant permissions to Transact-SQL objects.

For example, the following would create the stored procedure dbo.USR USP REPORT FOOD-
BANKTRANSACTIONTOTALS as well as grant the BBAPPFXREPORTROLE rights to execute the stored pro-
cedure. The report (rdl) itself would then include a Dataset that used the stored procedure.

<CreateSQL ObjectName="dbo.USR USP REPORT FOODBANKTRANSACTIONTOTALS" Object-
Type="SQLStoredProc">
<! [CDATA[
create procedure dbo.USR USP REPORT FOODBANKTRANSACTIONTOTALS as

select
c. [KEYNAME] as [FOODBANK],
f.[DESCRIPTION],
fh. [FOODBANKTXTYPE] as [TRANSACTIONTYPE],
fi.[NAME] as [FOODITEM]
sum (ft. [FOODITEMAMOUNT]
sum (ft. [QUANTITY]) as [
from dbo. [USR FOODBANK] f
left join dbo. [CONSTITUENT] c on c.[ID] = f.[CONSTITUENTID]
inner join dbo.[USR_FOODBANKTXHEADER] fh on fh.[FOODBANKID] = f.[ID]
left join dbo.[USR _FOODBANKTXDETAIL] ft on ft.[FOODBANKTXHEADERID] =

4
) as [TOTALFOODITEMAMOUNT],
TOTALFOODITEMQUANTITY]

fh. [ID]

left join dbo.[USR FOODITEM] fi on fi.[ID] = ft.[FOODITEMID]
group by

c. [KEYNAME],

f. [DESCRIPTION],

fh. [FOODBANKTXTYPE],

fi.[NAME]

11>
</CreateSQL>

Alternatively, the report may contain a Dataset using embedded Transact-SQL. In this case, the report author
would include the Transact-SQL for the report in the . rd1 fileitself. The BBAPPFXREPORTROLE will still need

to be granted rights to the individual tables referenced in the Dataset. This can also be done using the Crea-
teSQL element of the Report Spec. Here is a sample that would grant SELECT permissions to the BBAPPFXRE -
PORTROLEﬁntheUSRfFOODBANKtaMe

<CreateSQL ObjectName="USR FOODBANK" ObjectType="SQLTable"/>

DataSource

http://msdn.microsoft.com/en-us/library/ms173745(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms173745(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms173745(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms173745(v=sql.110).aspx

AppenDIX 144

The DataSource element is optional for the Report Spec. Many reports will pull their data directly from the
Infinity database. In this case, the DataSource element is not needed as the data source within the report will
be updated to use the Infinity data source (BBAppFxDB)when the Report Spec isloaded.

However, reports may leverage any data source that is available in Reporting Services by specifying the relative

path to the data source in the DataSource element. For example, the below will update the data source in the
report to use the Blackbaud Data Warehouse.

<DataSource>
<DataSourceRelativePath>Blackbaud OLAP Reports/Blackbaud OLAP SQL data
source</DataSourceRelativePath>
</DataSource>

https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/welcomebbdwsdk.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/welcomebbdwsdk.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/welcomebbdwsdk.htm

145 CHAPTER O

	Creating Blackbaud CRM Reports
	Code Samples for the Report
	Prospect Plan Status Durations Report
	Finding the Data
	Finding the Data in the Application
	Finding Data in the OLTP Database
	Finding Data in the Data Warehouse Database
	Code Formatting
	Creating an OLTP Version
	Overlapping Perspective Stored Procedure
	Consecutive Perspective Stored Procedure
	Nonconsecutive Perspective Stored Procedure

	Wiring up the Report
	Create an RDL File
	Create a Report Spec
	Report Spec for OLTP Version

	Create a Page, Task, and Package
	Load the Package

	Polishing the Report
	Formatting the Report
	Adding Parameters
	Update the RDL File with the Parameter
	Add a UI Model for the Parameter
	ProspectPlanStatusDurationsReportUIModel.vb
	ProspectPlanStatusDurationsReport.html

	Reporting off the Warehouse
	Should the Report Query a Table or a View?
	Something is Missing from the Table or View
	Creating a Data Warehouse Version
	Extending the Warehouse with a Table to Extend the Fact
	Creating Another Data Warehouse Version
	Extending the Data Warehouse with New Tables and Views
	BBDW_FACT_PROSPECTPLANSTAGEOCCURRENCE_EXT.dtsx

	Appendix
	Application Features
	Create a Report Spec
	Exploring a Report Spec

