
Blackbaud CRM Custom Reports Guide

09/19/2012 Blackbaud CRM 2.94 Blackbaud CRM Custom Reports US

©2012 Blackbaud, Inc. This publication, or any part thereof, may not be reproduced or transmitted in any form or by any
means, electronic, or mechanical, including photocopying, recording, storage in an information retrieval system, or other-
wise, without the prior written permission of Blackbaud, Inc.

The information in this manual has been carefully checked and is believed to be accurate. Blackbaud, Inc., assumes no
responsibility for any inaccuracies, errors, or omissions in this manual. In no event will Blackbaud, Inc., be liable for direct,
indirect, special, incidental, or consequential damages resulting from any defect or omission in this manual, even if advised
of the possibility of damages.

In the interest of continuing product development, Blackbaud, Inc., reserves the right to make improvements in this manual
and the products it describes at any time, without notice or obligation.

All Blackbaud product names appearing herein are trademarks or registered trademarks of Blackbaud, Inc.

All other products and company names mentioned herein are trademarks of their respective holder.

BlackbaudCRMCustomReports-2012

Contents
CREATING BLACKBAUD CRM REPORTS 1

CODE SAMPLES FOR THE REPORT 5

PROSPECT PLAN STATUS DURATIONS REPORT 11

FINDING THE DATA 17
Finding the Data in the Application 17
Finding Data in the OLTP Database 19
Finding Data in the Data Warehouse Database 24
Code Formatting 26
Creating an OLTP Version 27

Overlapping Perspective Stored Procedure 38
Consecutive Perspective Stored Procedure 39
Nonconsecutive Perspective Stored Procedure 41

WIRING UP THE REPORT 44
Create an RDL File 44
Create a Report Spec 54

Report Spec for OLTP Version 59
Create a Page, Task, and Package 65
Load the Package 79

POLISHING THE REPORT 82
Formatting the Report 82
Adding Parameters 84

Update the RDL File with the Parameter 87
Add a UI Model for the Parameter 90
ProspectPlanStatusDurationsReportUIModel.vb 96
ProspectPlanStatusDurationsReport.html 96

REPORTING OFF THEWAREHOUSE 98
Should the Report Query a Table or a View? 98
Something is Missing from the Table or View 99

Creating a Data Warehouse Version 100
Extending the Warehouse with a Table to Extend the Fact 102
Creating Another Data Warehouse Version 119
Extending the Data Warehouse with New Tables and Views 121

BBDW_FACT_PROSPECTPLANSTAGEOCCURRENCE_EXT.dtsx 124

APPENDIX 132
Application Features 132
Create a Report Spec 141
Exploring a Report Spec 142

Creating Blackbaud CRM
Reports
This is a document is about creating reports for Blackbaud CRM. In this guide we explore the creation of a report
about time periods for stages in a prospect plan. Along the way, we declare a design for the report, explore the
application for features related to the report, and look at the transactional database and the data warehouse
database data structures related to the report.

Wewill build a report based on the design which finds data in the transactional database. Then wewill create
reports which gather data from the data warehouse database. In the course of reporting from the data ware-
house, wewill explore extending the data warehouse to create a better structure for the report data.

This guide also includes an appendix of related, general topics: Appendix on page 132

chapter 1

2 CHAPTER 1

CREATING BLACKBAUD CRM REPORTS 3

4 CHAPTER 1

Code Samples for the
Report
The code samples for this document are located at:

https://www.blackbaud.com/files/support/infinitydevcasestudies/ProspectPlanStageDurationsReports.zip

Projects

The code samples include a Blackbaud Infinity catalog project. The project includes the specs necessary to load
the report into the application. Reports are primarily defined by RDL files and these are included in the project as
resources. But there are also specs which define the relationship of the Blackbaud Infinity feature to the RDL
(Report Specs). There are also specs to expose the report in the Blackbaud Infinity application UI (Page Specs and
Task Specs with the Report Spec). Finally there are specs to assist with loading the features into the Blackbaud
Infinity application (Package Specs).

Because Visual Studio 2010 does not providemuch functionality for editing RDL files, the RDL files for this sam-
ple were edited in another flavor ofVisual Studio, Business Intelligence Development Studio. Report Builder 2
could also have been used. Those files were copied to the catalog project.

The UI for the report's parameter is implemented with a Blackbaud Infinity UI Model. This requires a Blackbaud
Infinity UI model project. That project is contained in the same solution as the catalog project.

The solution also contains a project for Blackbaud Data Warehouse revisions extensions. Because Visual Studio
2010 does not providemuch functionality for editing SSIS packages, the files for the ETL extensions to the data
warehouse were edited in Business Intelligence Development Studio. Rather than copy those to the Visual Stu-
dio 2010 solution, those files weremaintained in a separate project.

Files

There are some environment-specific post-build commands in the projects. To use the samples, you will have to
modify those for your environment. Once built, these files must be copied to application folders:

Custom.AppFx.PlanStageDurations.Catalog.dll

from the catalog project build

builds to Cus-
tom.AppFx.Pl-
anStageDurations.Catalog\Custom.AppFx.PlanStageDurations.Catalog\bin\Debug

chapter 2

https://www.blackbaud.com/files/support/infinitydevcasestudies/ProspectPlanStageDurationsReports.zip

copy to Blackbaud\bbappfx\vroot\bin

Custom.AppFx.PlanStageDurations.UIModel.dll

from the UI model project build

builds to Cus-
tom.AppFx.Pl-
anStageDurations.Catalog\Custom.AppFx.PlanStageDurations.UIModel\obj\Debug

copy to Blackbaud\bbappfx\vroot\bin

ProspectPlanStageDurationsReportOLTPVersion.html

ProspectPlanStageDurationsReportDataWarehouseVersion1.html

ProspectPlanStageDurationsReportDataWarehouseVersion2.html

from the UI model project

located in

Cus-
tom.AppFx.Pl-
anStageDurations.Catalog\Custom.AppFx.PlanStageDurations.UIModel\htmlforms

copy to Blackbaud\bbappfx\vroot\browser\htmlforms

Revisions.dll

from the data warehouse revisions project build

builds to

Cus-
tom.AppFx.Pl-
anStageDurations.Catalog\Custom.AppFx.PlanStageDurations.Revisions\Revisions\obj\Debug

copy to Blackbaud\bbappfx\MSBuild\Datamarts\BBDW\Extend\Revisions

BBDW_FACT_INTERACTIONACTUALTIMES_EXT.dtsx

BBDW_FACT_PROSPECTPLANSTAGE_EXT.dtsx

BBDW_FACT_PROSPECTPLANSTAGEOCCURRENCE_EXT.dtsx

from the Analysis Services project

copy to Blackbaud\bbappfx\MSBuild\Datamarts\BBDW\Extend\SSIS

6 CHAPTER 2

Deployment

CODE SAMPLES FOR THE REPORT 7

Two versions of the report use the data warehouse and extensions to the warehouse. After the
Revisions.dll and SSIS packages are copied to the application folders, the data warehousemust be rede-
ployed and the ETL must be reset and refreshed.

Deploy Blackbaud Data Warehouse

Note: There are no revisions in the sample to support custom security. So you will have to ensure the report
user has permissions in the data warehouse database. This includes permissions to execute the stored pro-
cedures used by the reports.

All three versions include specs to expose the reports in a Blackbaud Infinity application. There are three pack-
ages in the catalog project DLL, one for each version. Each packagemust be loaded.

Package Specs

Warning: The loading mechanism for Report Specs overrides the data sources in the RDL when it loads the RDL.
The data warehouse versions use two data sets. The extra data set uses the OLTP database as a data source.
The reason for this is to avoid an extra extension to the warehouse just to support code table names used by
the report parameter. So once you load the report, you will have to reconfigure that data source for the those
reports in Reporting Services. You could instead remove the data set and populate the acceptable values for
the parameter through the UI model only. But then there would be no drop-down for those values when the
report is accessed through Reporting Services.

8 CHAPTER 2

https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cochdeploybbdw.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cochdeploybbdw.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cochdeploybbdw.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cochdeploybbdw.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/infps-developer-help/Content/InfinityPackageSpecs/WelcomePackageSpecs.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/infps-developer-help/Content/InfinityPackageSpecs/WelcomePackageSpecs.htm

CODE SAMPLES FOR THE REPORT 9

10 CHAPTER 2

Prospect Plan Status
Durations Report
This section is the design which will be implemented in the rest of the document. If you want to skip the design
details, you can skip this section and refer back to it as you read the remaining sections.

Goal

Create a report which shows average time in a stage of a prospect plan, themaximum time in stage, and themini-
mum time in stage.

Major Obstacle

The times associated with prospect plan stages are the start and end datetimes for prospect plan steps, which
are interactions. There is no data structure in the transactional database which represents the duration of a stage
in a prospect plan for a prospect. There are different ways to interpret these times to determine duration of a
stage.

Design

There are different types of prospect plans. Major giving is one type. There should be a filter on the report for
plan type. The goal of this design is fulfilled by selecting Major giving from the filter. But reports for each plan
type are possible if a different plan type is selected from the filter.

During a prospect plan, prospects can move back and forth between stages. For example in the first step of a
plan, a prospect may be in the Identification stage. In the second step, the prospect may be in the Cultivation
stage. And in the third step, the prospect may return to the Identification stage. So the prospect may spend non-
consecutive time in a stage.

A step occurs on a single day. It is a type of interaction. So the time in a stage can be determined from the time of
the first step in a stage and the time of the first step in the next stage. But because the prospect plan can have
nonconsecutive occurrences of a stage, there are different ways to consider the duration of a stage.

The report will show a nonconsecutive, consecutive, and overlapping perspective. These will be explained in
more detail.

Note: Overlapping steps poses another question. If a next stage's first step starts with a time that overlaps with
a step associated with a previous stage, should the end time of the step associated with the previous stage be

chapter 3

considered or should the start time of the next step be considered? Furthermore, this can happen for more
than two interactions (steps). But this will only occur in the course of a day since you can only enter one date
and not a start and end date for a step.

The report will not include information for steps that are not completed.

Note: The report could also exclude prospect plans which are active.

The report should be filterable by constituency of prospect, by prospect plan type, or both.

Note: The only parameter implemented in this document and the sample is prospect plan type.

Issue 1 - Nonconsecutive Perspective

The nonconsecutive perspective primarily communicates the average days in a stage. But it does not com-
municate whether a prospect plan left a stage and returned to it. Also, the nonconsecutive perspective does not
communicate howmany times a prospect plan entered a stage. However, the calculation does account for leav-
ing and returning. For a nonconsecutive perspective, the report will show average days in stage where the cal-
culation is:

End time for a stage occurrence = IF there is a subsequent step in the prospect plan THEN Start time for
first step after the last step in a stage occurrence ELSE IF the prospect plan is completed, End time for the last
step in the plan

Keep in mind that a stage occurrence with no subsequent step will not be considered if the prospect plan
is not complete. So the condition that the prospect plan be completed is always true for the preceding cal-
culation.

Total days in a stage occurrence = End time for a stage occurrence - Start time for the first step in the
stage occurrence

Total days in a stage in a prospect plan = Total of each (Total days in a stage occurrence)

Average days in stage (nonconsecutive) = Total days in a stage in a prospect plan / Number of prospect
plans

In a prospect plan with the steps that follow, the nonconsecutive times in each stage are calculated:

1: Identification, 06/05/2012 6:30:00 PM - 06/05/2012 5:00:00 PM

2: Identification, 06/06/2012 7:29:00 PM - 06/06/2012 6:15:00 PM

3: Cultivation, 06/09/2012 4:58:00 PM - 06/09/2012 3:30:00 PM

4: Identification, 06/11/2012 9:51:00 AM - 06/11/2012 6:30:00 AM

5: Cultivation, 06/17/2012 12:58:00 PM - 06/17/2012 12:05:00 PM

6: Cultivation, 06/21/2012 12:00:00 AM - 06/21/2012 12:00:00 AM

7: Solicitation, 06/22/2012 12:00:00 AM - 06/22/2012 12:00:00 AM

8: Solicitation, no actual dates yet

...

12 CHAPTER 3

l Identification days = 3.9375 days + 6.232638889 days = 10.17013889 days

The first Identification step started at 06/05/2012 5:000:00 PM and the next stage (Cultivation) started at
06/09/2012 3:30:00 PM. The difference is 3.9375 days. The plan returned to the Identification stage at
06/11/2012 6:30:00 AM and returned to Cultivation at 06/17/2012 12:05:00 PM. The difference is
6.232638889 days.

l Cultivation days = 1.625 + 4.496527778 = 6.121527778

l Solicitation days is considered to be indeterminate because there is an open Solicitation step

...

Then those times for each prospect plan are totaled and divided by the number of prospect plans. Theminimum
and maximum are also based on the nonconsecutive times.

PROSPECT PLAN STATUS DURATIONS REPORT 13

Stage Average nonconsecutive days in stage Min Max

Identification xx.xx xx.xx xx.xx

Cultivation xx.xx xx.xx xx.xx

Solicitation xx.xx xx.xx xx.xx

Negotiation xx.xx xx.xx xx.xx

Issue 2 - Consecutive Perspective

The consecutive perspective primarily communicates the average consecutive days in a stage. This is the average
duration of stage occurrences for a stage. The perspective also communicates the average number of times pros-
pect plans enter a stage. For a consecutive perspective, the report will show average days in a stage where the cal-
culation is:

Total consecutive days in a stage in a prospect plan = Total days in a stage occurrence

Average consecutive days in stage = Total of (Total consecutive days in a stage in a prospect plan) / Total
for all prospect plans of the total number times in a stage

The report will also show average times in a stage where the calculation is

Average times in a stage = Total number of times in a stage / Number of prospect plans

l Identification(a) = 3.9375 days

l Cultivation(a) = 1.625 days

l Identification(b) = 6.232638889 days

l Cultivation(b) = 4.496527778 days

l Total times in Identification for this plan = 2

l Total times in Cultivation for this plan = 2

l Solicitation days is considered to be indeterminate because there is an open Solicitation step

...

Stage
Average consecutive days in stage

(Average duration of stage occurrences)
Min Max

Average times in a stage

(Average number of stage occurrences)

Identification xx.xx xx.xx xx.xx x.x

Cultivation xx.xx xx.xx xx.xx x.x

Solicitation xx.xx xx.xx xx.xx x.x

Negotiation xx.xx xx.xx xx.xx x.x

Issue 3 - Overlapping Perspective

14 CHAPTER 3

The overlapping perspective includes the time spent in another stage if there are nonconsecutive occurrences of
stages. It does not express the average number of times a prospect plan spends in a stage. For an overlapping
perspective, the report will show average days in a stage where the calculation is:

Total days in stage = End datetime for the last step in stage in a prospect plan - Start time for first step in
stage in a prospect plan

Average days in stage (overlapping) = Total days in stage / Number of prospect plans

The report will also show average times in a stage where the calculation is

Average times in a stage = Total number of times in a stage / Number of prospect plans

l Identification = 06/11/2012 9:51:00 AM - 06/05/2012 5:00:00 PM = 5.70208333333333 days

l Cultivation(a) = 11.3541666666667 days

l Solicitation days is considered to be indeterminate because there is an open Solicitation step

...

Stage Average days in stage (overlapping) Min Max

Identification xx.xx xx.xx xx.xx

Cultivation xx.xx xx.xx xx.xx

Solicitation xx.xx xx.xx xx.xx

Negotiation xx.xx xx.xx xx.xx

Note: We could alternately consider the start datetime for the first step and the start datetime for the step
after the last step in the stage.

Overlapping Alternative:

Total days in stage = Start time for step after last step in stage in a prospect plan - Start time for first step

PROSPECT PLAN STATUS DURATIONS REPORT 15

in stage in a prospect plan

Average days in stage (overlapping) = Total days in stage / Number of prospect plans

The report will also show average times in a stage where the calculation is

Average times in a stage = Total number of times in a stage / Number of prospect plans

l Identification = 11.76944444 days

l Cultivation(a) = 12.29305556 days

l Solicitation days is considered to be indeterminate because there is an open Solicitation step

...

16 CHAPTER 3

Finding the Data
Finding the Data in the Application 17

Finding Data in the OLTP Database 19

Finding Data in the Data Warehouse Database 24

Code Formatting 26

Creating an OLTP Version 27

Within these topics wewill look at how to find data in the application, the transactional database, and in the data
warehouse database. Then wewill create Transact-SQL queries to calculate themetrics described in Prospect Plan
Status Durations Report on page 11.

Finding the Data in the Application
For information about Prospects functionality in Blackbaud CRM, see Prospects Guide.

This metric isn't surfaced in Blackbaud CRM as of version 2.93. For example, a KPI which shows average days in a
stage could be displayed on a page in Blackbaud CRM. But Blackbaud CRM does showwhich stage is associated
with a given step and which stage is associated with a prospect plan.

To find the features that show Prospect Plan Stage information, you can browse Blackbaud CRM features
through navigation, the search, or the Administration functional area. For more information, see Application Fea-
tures on page 132.

Here is one path to information about Prospect Plan Stages: Prospects > Major Giving Management
> Major Giving Management - Prospects.

chapter 4

https://www.blackbaud.com/files/support/guides/enterprise/prospect.pdf
https://www.blackbaud.com/files/support/guides/enterprise/prospect.pdf

18 CHAPTER 4

Finding Data in the OLTP Database
An entity relationship diagram for Prospects in an Infinity database is here: Prospects ERD

One part of the diagram that relates to this report example is:

F INDING THE DATA 19

https://www.blackbaud.com/files/support/guides/infinitytechref/Content/Resources/ERD/BBEC 2.93 ERD/BBEC 2.93 Prospects ERD.png
https://www.blackbaud.com/files/support/guides/infinitytechref/Content/Resources/ERD/BBEC 2.93 ERD/BBEC 2.93 Prospects ERD.png

An interaction is associated with a plan outline step through a foreign key. The column is PLAN-
OUTLINESTEPID of type uniqueidentifier. The GUIDs in the INTER-
ACTION.PLANOUTLINESTEPID column correspond to ID in the PLANOUTLINESTEP table.

A plan outline step is associated with a plan outline through a foreign key. The column is PLANOUTLINEID of
type uniqueidentifier. The GUIDs in the PLANOUTLINESTEP.PLANOUTLINEID column correspond
to ID in the PLANOUTLINE table.

An interaction is associated with a constituent through a foreign key. The column is CONSTITUENTID of type
uniqueidentifier. The GUIDs in the INTERACTION.CONSTITUENTID column correspond to ID in
the CONSTITUENT table.

20 CHAPTER 4

An interaction is associated with a prospect plan through a foreign key. The column is PROSPECTPLANID and
the fields are of type uniqueidentifier. The GUIDs in the INTERACTION.PROSPECTPLANID column
correspond to ID in the PROSPECTPLAN table.

Notice PROSPECTPLANSTATUSCODEID appears on the INTERACTION, PLANOUTLINESTEP, and PROS-
PECTPLAN tables. PROSPECTPLANSTATUSCODEID indicates which stage of the plan to which a step
belongs. PROSPECTPLANSTATUSCODEID identifies an entry on the PROSPECTPLANSTATUSCODE code
table. The code table is called Prospect Plan Stage. But the table name is PROSPECTPLANSTATUSCODE.

PROSPECTPLANSTATUSCODE (Prospect Plan Stage) can bemanaged from Administration > Code Tables. The
category for the Prospect Plan Stage code table is Major Giving. Typical entries include Identification,
Cultivation, Solicitation, and Negotiation.

The INTERACTION table contains other status information in the STATUSCODE, STATUS, and
COMPLETED columns. STATUSCODE is a tinyint column that maintains these codes: 0=Planned,
1=Pending, 2=Completed, 3=Unsuccessful, 4=Cancelled, 5=Declined. COMPLETED is
a computed int column with this expression: case when STATUSCODE in (2,3,4,5) then 1
else 0 end. So COMPLETED is true (1) when STATUSCODE contains the tinyint code representation for
Completed, Unsuccessful, Cancelled, or Declined. STATUS is a computed field which provides a translation for
STATUSCODE:

CASE [STATUSCODE]
WHEN 0 THEN N'Planned'
WHEN 1 THEN N'Pending'
WHEN 2 THEN N'Completed'
WHEN 3 THEN N'Unsuccessful'
WHEN 4 THEN N'Cancelled'
WHEN 5 THEN N'Declined'
END

Note: There are also status-related columns for funding requests. But these columns support Foundations
functionality.

F INDING THE DATA 21

On the PROSPECTPLAN table, PROSPECTPLANSTATUSCODEID indicates Current plan stage. This is the
stage of themost recently completed plan step. On the INTERACTION table, PROS-
PECTPLANSTATUSCODEID indicates the stage associated with the interaction, which also represents a step.
On the PLANOUTLINESTEP table, PROSPECTPLANSTATUSCODEID indicates the stage associated with the
plan outline step. A plan outline step is not a step in a prospect plan. A plan outline step is a step in a plan out-
line. Plan outline steps and plan outlines are templatemechanisms. Plan outlines establish the default steps
created when you add a plan based on a plan outline.

So for the purposes of reporting, plan outlines and plan outline steps are not the a primary concern unless the
goal is to audit the plan outlines and plan outline steps. But the current plan stage as maintained in PROS-
PECTPLANSTATUSCODEID in PROSPECTPLAN and the stages associated with steps as maintained in PROS-
PECTPLANSTATUSCODEID in INTERACTION are useful for reporting on the transitions between stages.
INTERACTION contains all of the steps. To report on the transition between stages, INTERACTION is the
table to query. But to report on the transition from the start of a plan to the current status, PROSPECTPLAN is
the table to query.

A constituent can be associated with more than one plan and more than one plan of a given type. A report that
breaks out information by constituent and plan typemust address that complication.

Later in the document, the core of our OLTP queries will use the PROSPECTPLAN, INTERACTION, and PROS-
PECTPLANSTATUSCODE tables as shown in the following database diagram created in SQL Server Man-
agement Studio.

22 CHAPTER 4

F INDING THE DATA 23

Finding Data in the Data Warehouse Database
Blackbaud Data Warehouse Tables and Major Giving Stages

A Blackbaud Data Warehouse database has these tables:

DIM_INTERACTION: The Interaction dimension contains information about constituent interactions.

FACT_INTERACTION: The Interaction fact relates information to constituent interactions.

DIM_PROSPECTPLAN: Contains information about prospect plans.

DIM_PROSPECTPLANSTATUS: Contains information about prospect plant status codes.

DIM_INTERACTION includes these columns and mappings among others:

INTERACTIONSTATUSCODE: dbo.[INTERACTION].[STATUSCODE]

INTERACTIONSTATUS: dbo.[INTERACTION].[STATUS]

ISINTERACTIONCOMPLETED: dbo.[INTERACTION].[COMPLETED]

FACT_INTERACTION includes these columns and mappings among others:

CONSTITUENTDIMID: Reference key to the constituent dimension, derived from dbo.[INTER-
ACTION].[CONSTITUENTID]

CONSTITUENTSYSTEMID: dbo.[INTERACTION].[CONSTITUENTID]

INTERACTIONDIMID: Reference key to the interaction dimension, derived from dbo.[INTER-
ACTION].[INTERACTIONTYPECODEID], dbo.[INTERACTION].[INTER-
ACTIONSUBCATEGORYID], dbo.[INTERACTION].[STATUSCODE], dbo.[INTERACTION].
[ISALLDAYEVENT], dbo.[INTERACTION].[ISINTERACTION], dbo.[INTERACTION].[COM-
PLETED], and dbo.[INTERACTION].[ISCONTACTREPORT]

PROSPECTPLANDIMID: Reference key to the prospect plan dimension, derived from dbo.[INTER-
ACTION].[PROSPECTPLANID]

PROSPECTPLANSTATUSDIMID: Reference key to the prospect plan status dimension, derived from
dbo.[INTERACTION].[PROSPECTPLANSTATUSCODEID]

DIM_PROSPECTPLAN includes these columns and mappings among others:

CONSTITUENTSYSTEMID: dbo.[PROSPECTPLAN].[PROSPECTID]

CONSTITUENTDIMID: Reference key to the constituent dimension, derived from dbo.[PROS-
PECTPLAN].[PROSPECTID]

PROSPECTSTATUS: dbo.[PROSPECTPLANSTATUSCODE].[DESCRIPTION]

PROSPECTPLANSTATUS: dbo.[PROSPECTPLANSTATUSCODE].[DESCRIPTION]

DIM_PROSPECTPLANSTATUS includes these columns and mappings among others:

PROSPECTPLANSTATUSSYSTEMID: dbo.[PROSPECTPLANSTATUSCODE].[ID]

24 CHAPTER 4

PROSPECTPLANSTATUS: dbo.[PROSPECTPLANSTATUSCODE].[DESCRIPTION]

Later in the document, the core of our first set of data warehouse queries will use the DIM_PROSPECTPLAN,
DIM_INTERACTION, FACT_INTERACTION, and DIM_PROSPECTPLANSTATUS tables as shown in the fol-
lowing database diagram created in SQL Server Management Studio. Notice there are no foreign key rela-
tionships. This is a characteristic of the Blackbaud Data Warehouse data warehouse database. However, if you
look at the primary keys for each of the dimension tables, they correspond to columns in the fact table. The rela-
tionships exist. But the database is oblivious. Removing foreign keys creates a performance gain for the ware-
house.

F INDING THE DATA 25

Blackbaud Data Warehouse Views and Major Giving Stages

Warning: Prospect Plan Stage (PROSPECTPLANSTATUSCODE) information is not a part of these views.

A Blackbaud Data Warehouse database has these views:

v_DIM_INTERACTION: The interaction dimension contains information about interactions.

v_FACT_INTERACTION: The interaction fact table contains information about constituent inter-
actions.

v_DIM_INTERACTION includes these columns and mappings among others:

INTERACTIONSTATUSCODE: BBDW.[DIM_INTERACTION].[INTERACTIONSTATUSCODE]

INTERACTIONSTATUS: BBDW.[DIM_INTERACTION].[INTERACTIONSTATUS]

ISINTERACTIONCOMPLETED: BBDW.[DIM_INTERACTION].[ISINTER-
ACTIONCOMPLETED]

v_FACT_INTERACTION includes these columns and mappings among others:

CONSTITUENTDIMID: BBDW.[FACT_INTERACTION].[CONSTITUENTDIMID]

CONSTITUENTSYSTEMID: BBDW.[FACT_INTERACTION].[CONSTITUENTSYSTEMID]

INTERACTIONDIMID: BBDW.[FACT_INTERACTION].[INTERACTIONDIMID]

Code Formatting
For the Transact-SQL samples in this documentation, wewill follow these guidelines.

l Enter Transact-SQL keywords in lower-case.

l Begin a custom stored procedure namewith USR_USP_.

l When coding a JOIN, use a fully qualified name for fields such as TABLENAME.FIELDNAME instead of
FIELDNAME.

l Indent the code.

26 CHAPTER 4

F INDING THE DATA 27

Creating an OLTP Version
A Report Which Queries the Blackbaud CRM OLTP Database

For information about reports in Blackbaud CRM, see Reports Guide. For more information about creating reports for Blackbaud CRM, see Infinity
Reports.

In many cases, you will get better performance from your reports if you report off of the data warehouse database. But we are going to compare a report
off of the OLTP database with reports off of the data warehouse. So wewill build both kinds.

Begin by creating a Report Spec. Once loaded, the Report Spec will connect the report to the application interface. For information about how to create a
Report Spec, see Create a Report Spec on page 141.

Use SQL Server Business Intelligence Development Studio (Visual Studio 2008) to create the project because there is an editor for RDL files.

Logic

Here is a query which returns the stage description (Identification, Cultivation, Negotiation, Solicitation, etc.), the prospect plan name, and the actual
start datetime for completed plan steps (interaction records). The query presents the results in order by prospect plan name and, within the prospect
plan name, by actual start datetime.

select PROSPECTPLANSTATUSCODE.[DESCRIPTION],
PROSPECTPLAN.[NAME],
INTERACTION.[ACTUALSTARTDATETIME]

from INTERACTION
inner join PROSPECTPLANSTATUSCODE on INTERACTION.[PROSPECTPLANSTATUSCODEID] = PROSPECTPLANSTATUSCODE.[ID]
inner join PROSPECTPLAN on INTERACTION.[PROSPECTPLANID] = PROSPECTPLAN.[ID]
where (INTERACTION.[COMPLETED] = 1)
group by PROSPECTPLANSTATUSCODE.[DESCRIPTION],

INTERACTION.[ACTUALSTARTDATETIME],
PROSPECTPLAN.[NAME]

order by PROSPECTPLAN.[NAME],
INTERACTION.[ACTUALSTARTDATETIME]

https://www.blackbaud.com/files/support/guides/enterprise/reports.pdf
https://www.blackbaud.com/files/support/guides/enterprise/reports.pdf
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/infrep-developer-help/Content/InfinityReports/WelcomeInfinityReports.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/infrep-developer-help/Content/InfinityReports/WelcomeInfinityReports.htm

28 CHAPTER 4

This gives us a starting place for the problem. If we create a plan in Blackbaud CRM called Test and enter the example steps from the design, the query
returns these rows:

DESCRIPTION NAME ACTUALSTARTDATETIME

Identification Test 06/05/2012 5:00:00 PM

Identification Test 06/06/2012 6:15:00 PM

Cultivation Test 06/09/2012 3:30:00 PM

Identification Test 06/11/2012 6:30:00 AM

Cultivation Test 06/17/2012 12:05:00 PM

Cultivation Test 06/21/2012 12:00:00 AM

Solicitation Test 06/22/2012 12:00:00 AM

If there were other prospect plans, there would be rows for those as well. But the results would be grouped by prospect plan name.

For each prospect plan, wewant to identify the first instance of consecutive occurrences of a stage description in these results. Those rows will give us
much of what we need to address the consecutive and nonconsecutive perspectives.

DESCRIPTION NAME ACTUALSTARTDATETIME

Identification Test 06/05/2012 5:00:00 PM

Identification Test 06/06/2012 6:15:00 PM

Cultivation Test 06/09/2012 3:30:00 PM

Identification Test 06/11/2012 6:30:00 AM

Cultivation Test 06/17/2012 12:05:00 PM

Cultivation Test 06/21/2012 12:00:00 AM

Solicitation Test 06/22/2012 12:00:00 AM

For each prospect plan, wewant to identify the first instance of a stage description in these results. Those rows will give us much of what we need to
address the overlapping perspective. For example:

F INDING THE DATA 29

DESCRIPTION NAME ACTUALSTARTDATETIME

Identification Test 06/05/2012 5:00:00 PM

Identification Test 06/06/2012 6:15:00 PM

Cultivation Test 06/09/2012 3:30:00 PM

Identification Test 06/11/2012 6:30:00 AM

Cultivation Test 06/17/2012 12:05:00 PM

Cultivation Test 06/21/2012 12:00:00 AM

Solicitation Test 06/22/2012 12:00:00 AM

The difference is that with the overlapping perspective, we are not concerned with when a new set of consecutive occurrences of a stage appear. In the
consecutive and nonconsecutive perspectives, we need to identify occurrences of consecutive stage descriptions. In the overlapping perspective, we
need to identify only the first occurrence of a stage description. But it turns out that we need information from adjacent rows to complete the picture.

For the first stage occurrence, the start time is also the start time of the first step in the plan. The end time is the end time of the last step in the occur-
rence. When there is a subsequent stage occurrence, the end datetime is the same as the start datetime of the first step in the subsequent occurrence.
When there is no subsequent stage occurrence, the end datetime is the end datetime of the plan, which is the same as the end datetime of the last step
in the stage occurrence. Since we are paring down rows to represent either a stage in the case of the overlapping perspective or a stage occurrence in the
other perspectives, we need to pick which rows.

We will hold on to the last row of each occurrence or stage. For the overlapping perspective, we have what we need in those rows with the exception
of the start datetime of the plan and the end datetime of the plan. We can use MIN and MAX partitioned by plan and status code to find the results we
need.

select i.[PROSPECTPLANSTATUSCODEID],
i.[ACTUALENDDATETIME],
min(i.[ACTUALSTARTDATETIME]) over (

partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [FIRSTSTEPINSTAGEDATETIME],

max(i.[ACTUALENDDATETIME]) over (
partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [LASTSTEPINSTAGEDATETIME]

from [INTERACTION] as i
where i.[COMPLETED] = 1

30 CHAPTER 4

For the Test plan data (1D85EEC8-5205-4205-A5D6-9A31F4C78EA5 is the ID for Test):

PROSPECTPLANSTATUSCODEID ACTUALENDDATETIME FIRSTSTEPINSTAGEDATETIME LASTSTEPINSTAGEDATETIME

1D85EEC8-5205-4205-A5D6-9A31F4C78EA5 2012-06-05 18:30:00.000 2012-06-05 17:00:00.000 2012-06-11 09:51:00.000

1D85EEC8-5205-4205-A5D6-9A31F4C78EA5 2012-06-06 19:29:00.000 2012-06-05 17:00:00.000 2012-06-11 09:51:00.000

1D85EEC8-5205-4205-A5D6-9A31F4C78EA5 2012-06-11 09:51:00.000 2012-06-05 17:00:00.000 2012-06-11 09:51:00.000

038E8841-E30B-4B32-A621-E986D75FAAF5 2012-06-22 00:00:00.000 2012-06-22 00:00:00.000 2012-06-22 00:00:00.000

3EF0AE1D-7F63-4471-BB63-EF9ACFEF168A 2012-06-17 12:58:00.000 2012-06-09 15:30:00.000 2012-06-21 00:00:00.000

3EF0AE1D-7F63-4471-BB63-EF9ACFEF168A 2012-06-21 00:00:00.000 2012-06-09 15:30:00.000 2012-06-21 00:00:00.000

3EF0AE1D-7F63-4471-BB63-EF9ACFEF168A 2012-06-09 16:58:00.000 2012-06-09 15:30:00.000 2012-06-21 00:00:00.000

We are going use aggregate calculations with these rows. We can set up a common table expression and select from that.

with [STEPS]
as
(

select i.[PROSPECTPLANSTATUSCODEID],
i.[ACTUALENDDATETIME],
min(i.[ACTUALSTARTDATETIME]) over (

partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [FIRSTSTEPINSTAGEDATETIME],

max(i.[ACTUALENDDATETIME]) over (
partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [LASTSTEPINSTAGEDATETIME]

from [INTERACTION] as i
where i.[COMPLETED] = 1
)

select *
from [STEPS] as s

This returns the same results. Wewant the friendly name for the stage rather than the GUID. So wewill use INNER JOIN to get the prospect plan
status code description from the PROSPECTPLANSTATUSCODE code table.

F INDING THE DATA 31

from [STEPS] as s
inner join [PROSPECTPLANSTATUSCODE] as p on s.[PROSPECTPLANSTATUSCODEID] = p.[ID]

We also want to reduce the rows to only the last row in a stage. Also, we are going to include the stage description. So wewillGROUP BY that.

where (s.[ACTUALENDDATETIME] = s.[LASTSTEPINSTAGEDATETIME])
group by p.[DESCRIPTION]

For every stage in a plan, we now have the stage description, start datetime, and end datetime. We can use the datetimes to calculate a duration and find
the average, minimum, and maximum of those durations.

with [STEPS]
as (

select i.[PROSPECTPLANSTATUSCODEID],
i.[ACTUALENDDATETIME],
min(i.[ACTUALSTARTDATETIME]) over (

partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [FIRSTSTEPINSTAGEDATETIME],

max(i.[ACTUALENDDATETIME]) over (
partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [LASTSTEPINSTAGEDATETIME]

from [INTERACTION] as i
where i.[COMPLETED] = 1
)

select p.[DESCRIPTION] as [STAGENAME],
avg(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [AVGSTAGEDURATION],
min(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MINSTAGEDURATION],
max(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MAXSTAGEDURATION]

from [STEPS] as s
inner join [PROSPECTPLANSTATUSCODE] as p on s.[PROSPECTPLANSTATUSCODEID] = p.[ID]
where (s.[ACTUALENDDATETIME] = s.[LASTSTEPINSTAGEDATETIME])
group by p.[DESCRIPTION]

STAGENAME AVGSTAGEDURATION MINSTAGEDURATION MAXSTAGEDURATION

Cultivation 11.3541666666667 11.3541666666667 11.3541666666667

Identification 5.70208333333333 5.70208333333333 5.70208333333333

Solicitation 0 0 0

32 CHAPTER 4

For the fullCREATE PROCEDURE code to be used in the Report Spec, see Overlapping Perspective Stored Procedure on page 38.

Nowwe have our overlapping perspective. The consecutive and nonconsecutive perspectives aremore complex. The reason is those perspectives look at
stage occurrences rather than just stages. A plan can go back and forth between stages. So there can bemore than one stage occurrence for a given
stage. For example, the plan can move from Identification to Solicitation and back to Identification. We can't partition this effectively in one query. To
overcome that, we can use row comparisons. To perform row comparisons, we join a table to itself on a sequence. But we stagger the sequence.

We are still going to use a common table expression. But wemaintain some additional information and create a sequence number for the steps. To create
a sequence number, we use the ROW_NUMBER function. We also maintain the start time, prospect plan ID, and prospect plan status ID. Wewill discuss
the parameter @PROSPECTPLANTYPECODEID in another section.

with [STEPS]
as (

select row_number() over (
order by i.[PROSPECTPLANID],

i.[ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],

i.[ACTUALSTARTDATETIME],
i.[ACTUALENDDATETIME],
i.[PROSPECTPLANID],
max(i.[ACTUALENDDATETIME]) over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i.[PROSPECTPLANSTATUSCODEID]

from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1

and pl.[PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
),

For the Test data:

ALL-
STEP-
SEQUENCENUMBER

ACTU-
ALSTARTDATETIME

ACTU-
ALENDDATETIME

PROS-
PECTPLANID

FIRST-
STE-
PINPLANDATETIME

LAST-
STE-
PINPLANDATETIME

PROS-
PECT-
PLANSTATUSCODEID

1
2012-06-05
17:00:00.000

2012-06-05
18:30:00.000

5F14DA30-
E8E7-49D7-
BF41-
3ABA267B3F2-

2012-06-05
17:00:00.000

2012-06-22
00:00:00.000

1D85EEC8-5205-4205-
A5D6-9A31F4C78EA5

F INDING THE DATA 33

ALL-
STEP-
SEQUENCENUMBER

ACTU-
ALSTARTDATETIME

ACTU-
ALENDDATETIME

PROS-
PECTPLANID

FIRST-
STE-
PINPLANDATETIME

LAST-
STE-
PINPLANDATETIME

PROS-
PECT-
PLANSTATUSCODEID

0

2
2012-06-06
18:15:00.000

2012-06-06
19:29:00.000

5F14DA30-
E8E7-49D7-
BF41-
3ABA267B3F2-
0

2012-06-05
17:00:00.000

2012-06-22
00:00:00.000

1D85EEC8-5205-4205-
A5D6-9A31F4C78EA5

3
2012-06-09
15:30:00.000

2012-06-09
16:58:00.000

5F14DA30-
E8E7-49D7-
BF41-
3ABA267B3F2-
0

2012-06-05
17:00:00.000

2012-06-22
00:00:00.000

3EF0AE1D-7F63-4471-
BB63-EF9ACFEF168A

4
2012-06-11
06:30:00.000

2012-06-11
09:51:00.000

5F14DA30-
E8E7-49D7-
BF41-
3ABA267B3F2-
0

2012-06-05
17:00:00.000

2012-06-22
00:00:00.000

1D85EEC8-5205-4205-
A5D6-9A31F4C78EA5

5
2012-06-17
12:05:00.000

2012-06-17
12:58:00.000

5F14DA30-
E8E7-49D7-
BF41-
3ABA267B3F2-
0

2012-06-05
17:00:00.000

2012-06-22
00:00:00.000

3EF0AE1D-7F63-4471-
BB63-EF9ACFEF168A

6
2012-06-21
00:00:00.000

2012-06-21
00:00:00.000

5F14DA30-
E8E7-49D7-
BF41-
3ABA267B3F2-
0

2012-06-05
17:00:00.000

2012-06-22
00:00:00.000

3EF0AE1D-7F63-4471-
BB63-EF9ACFEF168A

34 CHAPTER 4

ALL-
STEP-
SEQUENCENUMBER

ACTU-
ALSTARTDATETIME

ACTU-
ALENDDATETIME

PROS-
PECTPLANID

FIRST-
STE-
PINPLANDATETIME

LAST-
STE-
PINPLANDATETIME

PROS-
PECT-
PLANSTATUSCODEID

7
2012-06-22
00:00:00.000

2012-06-22
00:00:00.000

5F14DA30-
E8E7-49D7-
BF41-
3ABA267B3F2-
0

2012-06-05
17:00:00.000

2012-06-22
00:00:00.000

038E8841-E30B-4B32-
A621-E986D75FAAF5

Wewant to grab some information from the preceding rows before we filter and create granularities for the other two perspectives. In particular, we want
the prospect plan ID and prospect plan status of the preceding steps:

[STAGEOCCURRENCESFIRSTPASS]
as (

select s.[ACTUALSTARTDATETIME],
s.[ACTUALENDDATETIME],
r.[PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
s.[PROSPECTPLANSTATUSCODEID],
r.[PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
s.[PROSPECTPLANID],
s.[LASTSTEPINPLANENDDATETIME]

from [STEPS] as s
left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.[ALLSTEPSEQUENCENUMBER]
),

For the consecutive perspective, the [STEPS] granularity is used to create a [STAGEOCCURRENCES] granularity which is used by the [STAGE-
DURATIONS] common table expression:

[STAGEOCCURRENCES]
as (

select row_number() over (
order by sofp.[PROSPECTPLANID],

sofp.[ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],

sofp.[ACTUALSTARTDATETIME],
sofp.[ACTUALENDDATETIME],
sofp.[LASTSTEPINPLANENDDATETIME],
sofp.[PROSPECTPLANID],

F INDING THE DATA 35

sofp.[PROSPECTPLANSTATUSCODEID]
from [STAGEOCCURRENCESFIRSTPASS] as sofp
where sofp.[PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]

or (
(sofp.[PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)

),
[STAGEOCCURRENCEDURATIONS]
as (

select so1.[ACTUALSTARTDATETIME] as [STARTDATETIME],
so1.[ACTUALENDDATETIME] as [ENDDATETIME],
"STAGEOCCURRENCEDURATION" = case

when so1.[ACTUALENDDATETIME] <> so1.[LASTSTEPINPLANENDDATETIME]
then cast(so2.[ACTUALSTARTDATETIME] - so1.[ACTUALSTARTDATETIME] as float)

when so1.[ACTUALENDDATETIME] = so1.[LASTSTEPINPLANENDDATETIME]
then cast(so1.[ACTUALENDDATETIME] - so1.[ACTUALSTARTDATETIME] as float)

end,
so1.[PROSPECTPLANID],
so1.[PROSPECTPLANSTATUSCODEID]

from [STAGEOCCURRENCES] as so1
left join [STAGEOCCURRENCES] as so2 on so1.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so2.A-

LLSTAGEOCCURRENCESSEQUENCENUMBER
)

The information gleaned from the row comparison is used to filter out unneeded rows in order to establish the new granularity of stage occurrence. So
rather than discrete steps in a plan, the rows represent unbroken periods of time in a particular plan stage.

where sofp.[PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]
or (

(sofp.[PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)

In [STAGEOCCURRENCEDURATIONS] information from the next row for a stage occurrence is used to calculate stage occurrence durations. The case
statement determines qualities about the stage occurrence represented by the row and bases the duration calculation on those qualities.

"STAGEOCCURRENCEDURATION" = case
when so1.[ACTUALENDDATETIME] <> so1.[LASTSTEPINPLANENDDATETIME]

then cast(so2.[ACTUALSTARTDATETIME] - so1.[ACTUALSTARTDATETIME] as float)
when so1.[ACTUALENDDATETIME] = so1.[LASTSTEPINPLANENDDATETIME]

36 CHAPTER 4

then cast(so1.[ACTUALENDDATETIME] - so1.[ACTUALSTARTDATETIME] as float)
end,

DESCRIPTION AVGSTAGEOCCURRENCEDURATION MINSTAGEOCCURRENCEDURATION MAXSTAGEOCCURRENCEDURATION AVGTIMESINSTAGE

Cultivation 3.06076388888889 1.625 4.49652777777778 2

Identification 6.23263888888889 6.23263888888889 6.23263888888889 1

Solicitation 0 0 0 1

Notice that for the original sequence number (ALLSTEPSEQUENCENUMBER), we decremented the row in the comparison and for the second one (ALL-
STAGEOCCURRENCESSEQUENCENUMBER), we incremented the row. We used ALLSTAGEOCCURRENCESSEQUENCENUMBER to create a join to
compare the subsequent row, wewill use ALLSTEPSEQUENCENUMBER to compare the preceding row. But also notice that when we decremented, we
made this provision:.

where sofp.[PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]
or (

(sofp.[PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)

The calculation of average, minimum, maximum, and average count of occurrences is performed in a similar way as the overlapping perspective. But the
average times here are for stage occurrence durations not stage durations. Also, there is an extra calculation for average times in stage.

select p.[DESCRIPTION] as [STAGENAME],
avg(cast([STAGEOCCURRENCEDURATIONS].[STAGEOCCURRENCEDURATION] as float)) as [AVGSTAGEOCCURRENCEDURATION],
min(cast([STAGEOCCURRENCEDURATIONS].[STAGEOCCURRENCEDURATION] as float)) as [MINSTAGEOCCURRENCEDURATION],
max(cast([STAGEOCCURRENCEDURATIONS].[STAGEOCCURRENCEDURATION] as float)) as [MAXSTAGEOCCURRENCEDURATION],
cast(count([STAGEOCCURRENCEDURATIONS].[PROSPECTPLANID]) as float) / cast(count(distinct ([STAGEOCCURRENCEDURATIONS].

[PROSPECTPLANID])) as float) as [AVGTIMESINSTAGE]
from [STAGEOCCURRENCEDURATIONS]
inner join [PROSPECTPLANSTATUSCODE] as p on [STAGEOCCURRENCEDURATIONS].[PROSPECTPLANSTATUSCODEID] = p.[ID]
group by p.[DESCRIPTION]

It is tempting to find the average number of times in a stage using the AVG function on a count created in the previous granularity. But remember there is
a row for each stage occurrence. So the average would be weighted. This average calculation avoids that:

cast(count([STAGEOCCURRENCEDURATIONS].[PROSPECTPLANID]) as float) /
cast(count(distinct ([STAGEOCCURRENCEDURATIONS].[PROSPECTPLANID])) as float) as [AVGTIMESINSTAGE]

For the fullCREATE PROCEDURE code to be used in the Report Spec, see Consecutive Perspective Stored Procedure on page 39.

F INDING THE DATA 37

Themain difference between the consecutive and nonconsecutive perspective is the totaling of the stage occurrence times. We add another layer of gran-
ularity for durations and total the durations each stage occurrence.

[STAGEDURATIONS]
as (

select sum(cast(sod.[STAGEOCCURRENCEDURATION] as float)) over (
partition by sod.[PROSPECTPLANID],
sod.[PROSPECTPLANSTATUSCODEID]
) as [STAGEDURATION],

RANK() over (
partition by sod.[PROSPECTPLANID],
sod.[PROSPECTPLANSTATUSCODEID] order by sod.[ACTUALSTARTDATETIME]
) as [FIRSTOCCURRENCEROWINSTAGE],

sod.[PROSPECTPLANSTATUSCODEID]
from [STAGEOCCURRENCEDURATIONS] as sod
)

The average count of times in stage is not necessary for the nonconsecutive perspective:

select p.[DESCRIPTION] as [STAGENAME],
avg(cast([STAGEDURATIONS].[STAGEDURATION] as float)) as [AVGSTAGEDURATION],
min(cast([STAGEDURATIONS].[STAGEDURATION] as float)) as [MINSTAGEDURATION],
max(cast([STAGEDURATIONS].[STAGEDURATION] as float)) as [MAXSTAGEDURATION]

from [STAGEDURATIONS]
inner join [PROSPECTPLANSTATUSCODE] as p on [STAGEDURATIONS].[PROSPECTPLANSTATUSCODEID] = p.[ID]
where [FIRSTOCCURRENCEROWINSTAGE] = 1
group by p.[DESCRIPTION]

For the fullCREATE PROCEDURE code to be used in the Report Spec, see Nonconsecutive Perspective Stored Procedure on page 41.

38 CHAPTER 4

Overlapping Perspective Stored Procedure
create procedure dbo.USR_USP_REPORT_PLANSTAGEDURATIONSOVERLAPPING (@PROSPECTPLANTYPECODEID uniqueidentifier)
as
with [STEPS]
as (

select i.[PROSPECTPLANSTATUSCODEID],
i.[ACTUALENDDATETIME],
min(i.[ACTUALSTARTDATETIME]) over (

partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [FIRSTSTEPINSTAGEDATETIME],

max(i.[ACTUALENDDATETIME]) over (
partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [LASTSTEPINSTAGEDATETIME]

from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1

and pl.[PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
)

select p.[DESCRIPTION] as [STAGENAME],
avg(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [AVGSTAGEDURATION],
min(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MINSTAGEDURATION],
max(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MAXSTAGEDURATION]

from [STEPS] as s
inner join [PROSPECTPLANSTATUSCODE] as p on s.[PROSPECTPLANSTATUSCODEID] = p.[ID]
where (s.[ACTUALENDDATETIME] = s.[LASTSTEPINSTAGEDATETIME])
group by p.[DESCRIPTION]

F INDING THE DATA 39

Consecutive Perspective Stored Procedure
create procedure dbo.USR_USP_REPORT_PLANSTAGEDURATIONSCONSECUTIVE (@PROSPECTPLANTYPECODEID uniqueidentifier)
as
with [STEPS]
as (

select row_number() over (
order by i.[PROSPECTPLANID],

i.[ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],

i.[ACTUALSTARTDATETIME],
i.[ACTUALENDDATETIME],
i.[PROSPECTPLANID],
max(i.[ACTUALENDDATETIME]) over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i.[PROSPECTPLANSTATUSCODEID]

from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1

and pl.[PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
),

[STAGEOCCURRENCESFIRSTPASS]
as (

select s.[ACTUALSTARTDATETIME],
s.[ACTUALENDDATETIME],
r.[PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
s.[PROSPECTPLANSTATUSCODEID],
r.[PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
s.[PROSPECTPLANID],
s.[LASTSTEPINPLANENDDATETIME]

from [STEPS] as s
left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.[ALLSTEPSEQUENCENUMBER]
),

[STAGEOCCURRENCES]
as (

select row_number() over (
order by sofp.[PROSPECTPLANID],

sofp.[ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],

sofp.[ACTUALSTARTDATETIME],

40 CHAPTER 4

sofp.[ACTUALENDDATETIME],
sofp.[LASTSTEPINPLANENDDATETIME],
sofp.[PROSPECTPLANID],
sofp.[PROSPECTPLANSTATUSCODEID]

from [STAGEOCCURRENCESFIRSTPASS] as sofp
where sofp.[PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]

or (
(sofp.[PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)

),
[STAGEOCCURRENCEDURATIONS]
as (

select so1.[ACTUALSTARTDATETIME] as [STARTDATETIME],
so1.[ACTUALENDDATETIME] as [ENDDATETIME],
"STAGEOCCURRENCEDURATION" = case

when so1.[ACTUALENDDATETIME] <> so1.[LASTSTEPINPLANENDDATETIME]
then cast(so2.[ACTUALSTARTDATETIME] - so1.[ACTUALSTARTDATETIME] as float)

when so1.[ACTUALENDDATETIME] = so1.[LASTSTEPINPLANENDDATETIME]
then cast(so1.[ACTUALENDDATETIME] - so1.[ACTUALSTARTDATETIME] as float)

end,
so1.[PROSPECTPLANID],
so1.[PROSPECTPLANSTATUSCODEID]

from [STAGEOCCURRENCES] as so1
left join [STAGEOCCURRENCES] as so2 on so1.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so2.A-

LLSTAGEOCCURRENCESSEQUENCENUMBER
)

select p.[DESCRIPTION] as [STAGENAME],
avg(cast([STAGEOCCURRENCEDURATIONS].[STAGEOCCURRENCEDURATION] as float)) as [AVGSTAGEOCCURRENCEDURATION],
min(cast([STAGEOCCURRENCEDURATIONS].[STAGEOCCURRENCEDURATION] as float)) as [MINSTAGEOCCURRENCEDURATION],
max(cast([STAGEOCCURRENCEDURATIONS].[STAGEOCCURRENCEDURATION] as float)) as [MAXSTAGEOCCURRENCEDURATION],
cast(count([STAGEOCCURRENCEDURATIONS].[PROSPECTPLANID]) as float) / cast(count(distinct ([STAGEOCCURRENCEDURATIONS].

[PROSPECTPLANID])) as float) as [AVGTIMESINSTAGE]
from [STAGEOCCURRENCEDURATIONS]
inner join [PROSPECTPLANSTATUSCODE] as p on [STAGEOCCURRENCEDURATIONS].[PROSPECTPLANSTATUSCODEID] = p.[ID]
group by p.[DESCRIPTION]

F INDING THE DATA 41

Nonconsecutive Perspective Stored Procedure
create procedure dbo.USR_USP_REPORT_PLANSTAGEDURATIONSNONCONSECUTIVE (@PROSPECTPLANTYPECODEID uniqueidentifier)
as
with [STEPS]
as (

select row_number() over (
order by i.[PROSPECTPLANID],

i.[ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],

i.[ACTUALSTARTDATETIME],
i.[ACTUALENDDATETIME],
i.[PROSPECTPLANID],
max(i.[ACTUALENDDATETIME]) over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i.[PROSPECTPLANSTATUSCODEID]

from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1

and pl.[PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
),

[STAGEOCCURRENCESFIRSTPASS]
as (

select s.[ACTUALSTARTDATETIME],
s.[ACTUALENDDATETIME],
r.[PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
s.[PROSPECTPLANSTATUSCODEID],
r.[PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
s.[PROSPECTPLANID],
s.[LASTSTEPINPLANENDDATETIME]

from [STEPS] as s
left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.[ALLSTEPSEQUENCENUMBER]
),

[STAGEOCCURRENCES]
as (

select row_number() over (
order by sofp.[PROSPECTPLANID],

sofp.[ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],

sofp.[ACTUALSTARTDATETIME],

42 CHAPTER 4

sofp.[ACTUALENDDATETIME],
sofp.[LASTSTEPINPLANENDDATETIME],
sofp.[PROSPECTPLANID],
sofp.[PROSPECTPLANSTATUSCODEID]

from [STAGEOCCURRENCESFIRSTPASS] as sofp
where sofp.[PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]

or (
(sofp.[PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)

),
[STAGEOCCURRENCEDURATIONS]
as (

select so1.[ACTUALSTARTDATETIME],
so1.[ACTUALENDDATETIME],
"STAGEOCCURRENCEDURATION" = case

when so1.[ACTUALENDDATETIME] <> so1.[LASTSTEPINPLANENDDATETIME]
then cast(so2.[ACTUALSTARTDATETIME] - so1.[ACTUALSTARTDATETIME] as float)

when so1.[ACTUALENDDATETIME] = so1.[LASTSTEPINPLANENDDATETIME]
then CAST(so1.[ACTUALENDDATETIME] - so1.[ACTUALSTARTDATETIME] as float)

end,
so1.[PROSPECTPLANSTATUSCODEID],
so1.[PROSPECTPLANID]

from [STAGEOCCURRENCES] as so1
left join [STAGEOCCURRENCES] as so2 on so1.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so2.A-

LLSTAGEOCCURRENCESSEQUENCENUMBER
),

[STAGEDURATIONS]
as (

select sum(cast(sod.[STAGEOCCURRENCEDURATION] as float)) over (
partition by sod.[PROSPECTPLANID],
sod.[PROSPECTPLANSTATUSCODEID]
) as [STAGEDURATION],

RANK() over (
partition by sod.[PROSPECTPLANID],
sod.[PROSPECTPLANSTATUSCODEID] order by sod.[ACTUALSTARTDATETIME]
) as [FIRSTOCCURRENCEROWINSTAGE],

sod.[PROSPECTPLANSTATUSCODEID]
from [STAGEOCCURRENCEDURATIONS] as sod
)

select p.[DESCRIPTION] as [STAGENAME],

F INDING THE DATA 43

avg(cast([STAGEDURATIONS].[STAGEDURATION] as float)) as [AVGSTAGEDURATION],
min(cast([STAGEDURATIONS].[STAGEDURATION] as float)) as [MINSTAGEDURATION],
max(cast([STAGEDURATIONS].[STAGEDURATION] as float)) as [MAXSTAGEDURATION]

from [STAGEDURATIONS]
inner join [PROSPECTPLANSTATUSCODE] as p on [STAGEDURATIONS].[PROSPECTPLANSTATUSCODEID] = p.[ID]
where [FIRSTOCCURRENCEROWINSTAGE] = 1
group by p.[DESCRIPTION]

Wiring up the Report
Create an RDL File 44

Create a Report Spec 54

Create a Page, Task, and Package 65

Load the Package 79

Within these topics wewill look at how to create the report (RDL) file to use the query we created in Creating an
OLTP Version on page 27. Wewill create a Blackbaud Infinity Report Spec to reference the RDL file, a Page Spec to
define a page to display the report, and a Task Spec to define a link to appear in a functional area to open the
page that displays the report. Wewill also create a Package Spec to make it easier to add those items to the cat-
alog. Finally, we will load everything into the application and see the report displayed.

Create an RDL File
Note: These steps describe how to create the file and add the needed parameters, embedded data source, and
embedded data set for the OLTP version of the report. The steps are similar for the data warehouse versions.
But the stored procedures executed by the datasets in those versions are located in the data warehouse data-
base. However, the data warehouse versions still access the OLTP database to populate the available values for
the prospect plan type parameter. This could also be done from the data warehouse. But as of writing, that
would require an additional extension to the data warehouse.

1. Open Visual Studio 2008with Business Intelligence Development Studio functionality installed.

For more information, seeMicrosoft's MSDN article at Introducing Business Intelligence Development Stu-
dio.

2. To create a newReport Server project, click File > New > Project. The New Project screen appears.

Otherwise skip this and the next step and open your existing Report Server project.

chapter 5

http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms173767(SQL.105).aspx

3. Select the Report Server Project template from the Business Intelligence Projects type templates, enter a
name, and click OK. The new project appears.

4. From Solution Explorer, right-click Reports and select Add > New Item.

45 CHAPTER 5

The Add New Item screen appears.

5. From Categories, select Report Project and from Templates select Report.

6. Enter a name and click Add.

The report appears in the designer.

7. Connect the RDL to your Blackbaud Infinity OLTP database.

From the Report Data window, right-click Data Sources and select Add Data Source.

W IRING UP THE REPORT 46

8. The Data Source Properties screen appears. Enter a name such as BBInfinity.

9. Select Embedded connection and from Type, selectMicrosoft SQL Server.

10. Click the Edit button next to Connection string. The Connection Properties screen appears.

11. From Server Name, select the name of the server which hosts your OLTP database.

12. From Connect to a database > Select or enter a database name, select the name of your OLTP database
such as BBInfinity.

47 CHAPTER 5

13. Click OK. You return to the Data Source Properties screen.

W IRING UP THE REPORT 48

14. Click OK. The Data Source is added to the RDL file.

15. From Report Data, create a data set from your Blackbaud Infinity OLTP database. Right-click Datasets and
select Add Dataset. The Dataset Properties screen appears.

16. The goal is to create a dataset for each stored procedure in the report.

49 CHAPTER 5

Enter a name such as USR_USP_REPORT_PLANSTAGEDURATIONSCONSECUTIVE and select Use a
dataset embedded in my report.

17. From Data source, select the data source you created for the OLTP database.

18. From Query type, select Stored Procedure.

19. From Select or enter stored procedure name, select the name of the stored procedure in your Report
Spec.

Note: If you create the RDL file first, you can temporarily add the stored procedure to your development
database with SQL Server Management Studio. If you create the Report Spec first, you load the spec
with LoadSpec. This way when you select the stored procedure, the fields and parameters will be rec-
ognized by the dataset.

20. Click Refresh Fields. If the stored procedure exists in the database in your connection, the other tabs of
the Dataset Properties screen will be updated. This is easier than filling those out manually.

21. Open the Fields tab of the Dataset Properties screen and confirm the fields were found.

W IRING UP THE REPORT 50

22. Click the Parameters tab of the Dataset Properties screen.

51 CHAPTER 5

23. There is no report parameter to map the dataset parameter to yet. Click OK. Visual Studio will probably
recognize the discrepancy and add the parameter. If not, right-click Parameters and add the PROS-
PECTPLANTYPECODEID parameter.

24. We need to populate the available values for the PROSPECTPLANTYPECODEID parameter. Add a new
dataset for that. Right-click Datasets and select Add Dataset.

25. ForName, enter ProspectPlanTypeCode.

26. Select User a dataset embedded in my report.

W IRING UP THE REPORT 52

27. Select the OLTP data source you created.

28. Select Query type > Text.

29. In theQuery field, enter:

select [ID], [DESCRIPTION] from [PROSPECTPLANTYPECODE]

30. Click OK.

31. Return to the Parameter Properties screen for the PROSPECTPLANTYPECODEID parameter.

32. From Available Values, select Get values from a query.

33. From Dataset, select ProspectPlanTypeCode.

34. From Value field, select ID.

35. From Label field, select DESCRIPTION.

36. Click OK.

53 CHAPTER 5

37. Return to the Parameters tab on the Dataset Properties screen for the stored procedure dataset.

38. You can now select a parameter value for the parameter. But click the function button next to the Param-
eter Value field. The Expression screen appears.

39. Enter this expression.

=Parameters!PROSPECTPLANTYPECODEID.Value

40. Click OK twice to exit those screens.

41. Right-click the PROSPECTPLANTYPECODEID parameter and select Parameter Properties.

42. Create datasets for the other two stored procedures:

USR_USP_REPORT_PLANSTAGEDURATIONSNONCONSECUTIVE

USR_USP_REPORT_PLANSTAGEDURATIONSOVERLAPPING

43. Create a parameter for user ID. Right-click Parameters and select Add Parameter.

44. From Name, enter ALTREPORTUSERID and from Prompt enter Alt Report UserID.

45. From the Default Values tab, select Specify values.

46. Click the function button next to the Value field. The Expression screen appears.

47. From the Set expression for: Value field, enter:

=User!UserID

48. Click OK twice.

49. Save the RDL file.

Create a Report Spec
1. To create a new Catalog Project for Blackbaud Infinity development, from Visual Studio with the Black-

baud Infinity SDK installed, click File > New > Project. Then from the New Project screen, click Catalog
Project, enter a name and click OK. Otherwise, open your existing Catalog Project.

W IRING UP THE REPORT 54

2. From the project node in the Solution Explorer, click Add > New Item.

3. From the Add New Item screen, click Installed Templates > Common Items > Blackbaud AppFx Catalog
> Report Spec.

55 CHAPTER 5

The Report Spec appears.

<ReportSpec
xmlns="bb_appfx_report"
xmlns:common="bb_appfx_commontypes"
ID="882fe807-2570-4900-9c89-0861070f7ea5"
Name="PlanStageDurationsOLTP Report"
Description="REPLACE_WITH_DESCRIPTION"
Author="Blackbaud Product Development"
>

<RDLFileName>PlanStageDurationsOLTP.rdl</RDLFileName>
<Folder>System Reports/Misc Reports</Folder>

<DataRetrieval>
<CreateSQL ObjectName="dbo.USP_REPORT_xxx" ObjectType="SQLStoredProc">

<![CDATA[
create procedure dbo.USP_REPORT_xxx
(
<list any report parameters here>
)
as

<build the report SQL here>
]]>

</CreateSQL>

W IRING UP THE REPORT 56

</DataRetrieval>

</ReportSpec>

4. Adjust this information:

Name: Prospect Plan Stage Durations Report (OLTP Version)

Description: Displays the averages, minimums, and maximums of durations of
plan stages and stage occurrences. Also displays an average count of
stage occurrences.

Author: Technical Training

RDLFileName: Cus-
tom.AppFx.PlanStageDurations.Catalog.PlanStageDurationsReport.rdl

DataRetrieval: See the code sample at Report Spec for OLTP Version on page 59.

5. Save the Report Spec.

Note: At this point, if you attempt to run LoadSpec to test the spec, LoadSpec will throw an error
because the RDL file is not available. Message shown for a different version:

Connecting to database 'BBInfinity' on server 'MJHFX99\MSSQLSERVER2008R'.
Loading ...C:\Users\TomTr\Documents\Visual Studio 2010\Proje-
cts\M-
ajorGivingPlanStageDurations\MajorGivingPlanStageDurations\MajorGivingPlanStageDurations.Report.xml
Uploading ReportSpec 'Plan Stage Durations - Averages Report' to
catalog...
Uploading input file C:\Users\TomTr\Documents\Visual Studio 2010\Proje-
cts\M-
ajorGivingPlanStageDurations\MajorGivingPlanStageDurations\MajorGivingPlanStageDurations.Report.xml
Error.
The specified report definition, "C:\Users\TomTr\Documents\Visual Studio
2010\Proje-
cts\M-
ajorGivingPlanStageDurations\MajorGivingPlanStageDurations\MajorGivingPlanStageDurations.rdl"
could not be located.
Upload complete.

6. Add the RDL file created in Create an RDL File on page 44 to the project as an embedded resource. From
Solution Explorer, right-click the project and click Add > Existing Item.

7. Browse to the RDL file and click Add.

57 CHAPTER 5

8. Right-click the RDL file and select Properties.

9. From Build Action, select Embedded Resource.

10. Save the project.

As you update the RDL file in your Report Server project, you will have to update this version of the RDL.
You could alternately update this file from ReportBuilder 2.0, Business Intelligence Development Studio
outside of the context of the project, or with an XML editor.

W IRING UP THE REPORT 58

59 CHAPTER 5

Report Spec for OLTP Version

Note: This version includes stored procedure parameters and UIModel items described elsewhere in the documentation.

<ReportSpec
xmlns="bb_appfx_report"
xmlns:common="bb_appfx_commontypes"
ID="882fe807-2570-4900-9c89-0861070f7ea5"
Name="Prospect Plan Stage Durations Report (OLTP Version)"
Description="Displays the averages, minimums, and maximums of durations of plan stages and stage occurrences. Also

displays an average count of stage occurrences."
Author="Technical Training"
>

<RDLFileName>Custom.AppFx.PlanStageDurations.Catalog.PlanStageDurationsReport.rdl</RDLFileName>
<Folder>Custom Reports/Misc Reports</Folder>

<DataRetrieval>
<CreateSQL ObjectName="dbo.USR_USP_REPORT_PLANSTAGEDURATIONSOVERLAPPING" ObjectType="SQLStoredProc">

<![CDATA[
create procedure dbo.USR_USP_REPORT_PLANSTAGEDURATIONSOVERLAPPING (@PROSPECTPLANTYPECODEID uniqueidentifier)
as
with [STEPS]
as (

select i.[PROSPECTPLANSTATUSCODEID],
i.[ACTUALENDDATETIME],
min(i.[ACTUALSTARTDATETIME]) over (

partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [FIRSTSTEPINSTAGEDATETIME],

max(i.[ACTUALENDDATETIME]) over (
partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [LASTSTEPINSTAGEDATETIME]

from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1

and pl.[PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
)

W IRING UP THE REPORT 60

select p.[DESCRIPTION] as [STAGENAME],
avg(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [AVGSTAGEDURATION],
min(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MINSTAGEDURATION],
max(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MAXSTAGEDURATION]

from [STEPS] as s
inner join [PROSPECTPLANSTATUSCODE] as p on s.[PROSPECTPLANSTATUSCODEID] = p.[ID]
where (s.[ACTUALENDDATETIME] = s.[LASTSTEPINSTAGEDATETIME])
group by p.[DESCRIPTION]

]]>
</CreateSQL>

<CreateSQL ObjectName="dbo.USR_USP_REPORT_PLANSTAGEDURATIONSCONSECUTIVE" ObjectType="SQLStoredProc">
<![CDATA[

create procedure dbo.USR_USP_REPORT_PLANSTAGEDURATIONSCONSECUTIVE (@PROSPECTPLANTYPECODEID uniqueidentifier)
as
with [STEPS]
as (

select row_number() over (
order by i.[PROSPECTPLANID],

i.[ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],

i.[ACTUALSTARTDATETIME],
i.[ACTUALENDDATETIME],
i.[PROSPECTPLANID],
max(i.[ACTUALENDDATETIME]) over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i.[PROSPECTPLANSTATUSCODEID]

from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1

and pl.[PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
),

[STAGEOCCURRENCESFIRSTPASS]
as (

select s.[ACTUALSTARTDATETIME],
s.[ACTUALENDDATETIME],
r.[PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
s.[PROSPECTPLANSTATUSCODEID],
r.[PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
s.[PROSPECTPLANID],
s.[LASTSTEPINPLANENDDATETIME]

from [STEPS] as s

61 CHAPTER 5

left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.[ALLSTEPSEQUENCENUMBER]
),

[STAGEOCCURRENCES]
as (

select row_number() over (
order by sofp.[PROSPECTPLANID],

sofp.[ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],

sofp.[ACTUALSTARTDATETIME],
sofp.[ACTUALENDDATETIME],
sofp.[LASTSTEPINPLANENDDATETIME],
sofp.[PROSPECTPLANID],
sofp.[PROSPECTPLANSTATUSCODEID]

from [STAGEOCCURRENCESFIRSTPASS] as sofp
where sofp.[PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]

or (
(sofp.[PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)

),
[STAGEOCCURRENCEDURATIONS]
as (

select so1.[ACTUALSTARTDATETIME] as [STARTDATETIME],
so1.[ACTUALENDDATETIME] as [ENDDATETIME],
"STAGEOCCURRENCEDURATION" = case

when so1.[ACTUALENDDATETIME] <> so1.[LASTSTEPINPLANENDDATETIME]
then cast(so2.[ACTUALSTARTDATETIME] - so1.[ACTUALSTARTDATETIME] as float)

when so1.[ACTUALENDDATETIME] = so1.[LASTSTEPINPLANENDDATETIME]
then cast(so1.[ACTUALENDDATETIME] - so1.[ACTUALSTARTDATETIME] as float)

end,
so1.[PROSPECTPLANID],
so1.[PROSPECTPLANSTATUSCODEID]

from [STAGEOCCURRENCES] as so1
left join [STAGEOCCURRENCES] as so2 on so1.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so2.A-

LLSTAGEOCCURRENCESSEQUENCENUMBER
)

select p.[DESCRIPTION] as [STAGENAME],
avg(cast([STAGEOCCURRENCEDURATIONS].[STAGEOCCURRENCEDURATION] as float)) as [AVGSTAGEOCCURRENCEDURATION],
min(cast([STAGEOCCURRENCEDURATIONS].[STAGEOCCURRENCEDURATION] as float)) as [MINSTAGEOCCURRENCEDURATION],
max(cast([STAGEOCCURRENCEDURATIONS].[STAGEOCCURRENCEDURATION] as float)) as [MAXSTAGEOCCURRENCEDURATION],
cast(count([STAGEOCCURRENCEDURATIONS].[PROSPECTPLANID]) as float) / cast(count(distinct ([STAGEOCCURRENCEDURATIONS].

W IRING UP THE REPORT 62

[PROSPECTPLANID])) as float) as [AVGTIMESINSTAGE]
from [STAGEOCCURRENCEDURATIONS]
inner join [PROSPECTPLANSTATUSCODE] as p on [STAGEOCCURRENCEDURATIONS].[PROSPECTPLANSTATUSCODEID] = p.[ID]
group by p.[DESCRIPTION]

]]>
</CreateSQL>

<CreateSQL ObjectName="dbo.USR_USP_REPORT_PLANSTAGEDURATIONSNONCONSECUTIVE" ObjectType="SQLStoredProc">
<![CDATA[

create procedure dbo.USR_USP_REPORT_PLANSTAGEDURATIONSNONCONSECUTIVE (@PROSPECTPLANTYPECODEID uniqueidentifier)
as
with [STEPS]
as (

select row_number() over (
order by i.[PROSPECTPLANID],

i.[ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],

i.[ACTUALSTARTDATETIME],
i.[ACTUALENDDATETIME],
i.[PROSPECTPLANID],
max(i.[ACTUALENDDATETIME]) over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i.[PROSPECTPLANSTATUSCODEID]

from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1

and pl.[PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
),

[STAGEOCCURRENCESFIRSTPASS]
as (

select s.[ACTUALSTARTDATETIME],
s.[ACTUALENDDATETIME],
r.[PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
s.[PROSPECTPLANSTATUSCODEID],
r.[PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
s.[PROSPECTPLANID],
s.[LASTSTEPINPLANENDDATETIME]

from [STEPS] as s
left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.[ALLSTEPSEQUENCENUMBER]
),

[STAGEOCCURRENCES]
as (

63 CHAPTER 5

select row_number() over (
order by sofp.[PROSPECTPLANID],

sofp.[ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],

sofp.[ACTUALSTARTDATETIME],
sofp.[ACTUALENDDATETIME],
sofp.[LASTSTEPINPLANENDDATETIME],
sofp.[PROSPECTPLANID],
sofp.[PROSPECTPLANSTATUSCODEID]

from [STAGEOCCURRENCESFIRSTPASS] as sofp
where sofp.[PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]

or (
(sofp.[PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)

),
[STAGEOCCURRENCEDURATIONS]
as (

select so1.[ACTUALSTARTDATETIME],
so1.[ACTUALENDDATETIME],
"STAGEOCCURRENCEDURATION" = case

when so1.[ACTUALENDDATETIME] <> so1.[LASTSTEPINPLANENDDATETIME]
then cast(so2.[ACTUALSTARTDATETIME] - so1.[ACTUALSTARTDATETIME] as float)

when so1.[ACTUALENDDATETIME] = so1.[LASTSTEPINPLANENDDATETIME]
then CAST(so1.[ACTUALENDDATETIME] - so1.[ACTUALSTARTDATETIME] as float)

end,
so1.[PROSPECTPLANSTATUSCODEID],
so1.[PROSPECTPLANID]

from [STAGEOCCURRENCES] as so1
left join [STAGEOCCURRENCES] as so2 on so1.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so2.A-

LLSTAGEOCCURRENCESSEQUENCENUMBER
),

[STAGEDURATIONS]
as (

select sum(cast(sod.[STAGEOCCURRENCEDURATION] as float)) over (
partition by sod.[PROSPECTPLANID],
sod.[PROSPECTPLANSTATUSCODEID]
) as [STAGEDURATION],

RANK() over (
partition by sod.[PROSPECTPLANID],
sod.[PROSPECTPLANSTATUSCODEID] order by sod.[ACTUALSTARTDATETIME]

W IRING UP THE REPORT 64

) as [FIRSTOCCURRENCEROWINSTAGE],
sod.[PROSPECTPLANSTATUSCODEID]

from [STAGEOCCURRENCEDURATIONS] as sod
)

select p.[DESCRIPTION] as [STAGENAME],
avg(cast([STAGEDURATIONS].[STAGEDURATION] as float)) as [AVGSTAGEDURATION],
min(cast([STAGEDURATIONS].[STAGEDURATION] as float)) as [MINSTAGEDURATION],
max(cast([STAGEDURATIONS].[STAGEDURATION] as float)) as [MAXSTAGEDURATION]

from [STAGEDURATIONS]
inner join [PROSPECTPLANSTATUSCODE] as p on [STAGEDURATIONS].[PROSPECTPLANSTATUSCODEID] = p.[ID]
where [FIRSTOCCURRENCEROWINSTAGE] = 1
group by p.[DESCRIPTION]

]]>
</CreateSQL>

</DataRetrieval>

<common:FormMetaData>
<common:FormFields>
<common:FormField DataType="Guid" FieldID="PROSPECTPLANTYPECODEID" Caption="Prospect Plan Type Code"

Required="true">
<common:CodeTable CodeTableName="PROSPECTPLANTYPECODE" />

</common:FormField>
</common:FormFields>

<common:WebUIComponent>
<common:UIModel AssemblyName="Custom.AppFx.PlanStageDurations.UIModel.dll" Class-

Name="C-
ustom.AppFx.PlanStageDurations.UIModel.ProspectPlanStatusDurations.ProspectPlanStageDurationsReportOLTPVersionUIModel"
/>

<common:WebUI>
<common:ExternalResource Url="browser/htmlforms/ProspectPlanStageDurationsReportOLTPVersion.html" />

</common:WebUI>
</common:WebUIComponent>

</common:FormMetaData>

65 CHAPTER 5

</ReportSpec>

Create a Page, Task, and Package
Page Spec

1. Right-click the project and select Add > New Item. The Add New Item screen appears.

2. From the Blackbaud AppFx Catalog items, select Page Definition Spec.

3. Enter a name such as PlanStageDurationsOLTPReport.Page.xml.

W IRING UP THE REPORT 66

4. Click Add. The spec appears.

67 CHAPTER 5

5. Adjust this information:

Name: Prospect Plan Stage Durations Report (OLTP Version) Page

Description: A page to display the Prospect Plan Stage Durations (OLTP Version) Report

Author: Technical Training

6. Remove the ContextRecordType attribute.

7. Change the PageHeader Caption attribute to Prospect Plan Stage Durations Report (OLTP Version).

8. Remove the PageHeader ImageKey attribute.

9. Change the Tab Caption to Prospect Plan Stage Durations Report (OLTP Version).

10. From the template Section, remove the DataList and Actions element.

W IRING UP THE REPORT 68

11. Within the section, add a Report element.

12. To the Report element, add the AutoLoad attribute with a value oftrue.

13. To the Report element, add the ID attribute with the value of the ID for the report. This is the ID attribute in the ReportSpec element for
the Report Spec.

<Section ID="7d956395-a588-4009-8a2d-40f09a92e52b" Caption="Prospect Plan Stage Durations Report (OLTP Version)
">

<Report AutoLoad="false" ID="882fe807-2570-4900-9c89-0861070f7ea5"></Report>
</Section>

14. Remove the PageActionGroups element.

<PageDefinitionSpec
xmlns="bb_appfx_pagedefinition"
xmlns:common="bb_appfx_commontypes"
ID="85ac7dd6-f479-47b0-ae92-4c8008132fc8"
Name="Prospect Plan Stage Durations Report (OLTP Version) Page"
Description="A page to display the Prospect Plan Stage Durations (OLTP Version) Report"
Author="Technical Training"
>

<!-- Note: A page can optionally have a view form associated with it as the "Expression form". While imple-
mented as a view data form,

this form has no UI in this context, and is simply used as a way of loading additional information associated
with the page. The fields

returned by the expression form can be used as expressions in various properties throughout the page. To spec-
ify an expression form for this

page, add the following attribute: ExpressionDataFormID="<some guid>"-->

<!-- define how the page header should appear -->
<PageHeader Caption="Prospect Plan Stage Durations Report (OLTP Version)" />

<!-- define the tabs for the page - note that if only one tab is present, then that tab's sections are promoted
to the page level (ie., the tab

itself isn't shown -->
<Tabs>

<Tab ID="d850d962-3724-4616-964c-5a234ba79e61" Caption="Prospect Plan Stage Durations Report (OLTP Version)">

69 CHAPTER 5

<!-- define the sections for this tab -->
<Sections>

<Section ID="7d956395-a588-4009-8a2d-40f09a92e52b" Caption="Prospect Plan Stage Durations Report (OLTP Ver-
sion)">

<Report AutoLoad="false" ID="882fe807-2570-4900-9c89-0861070f7ea5"></Report>
</Section>

</Sections>
</Tab>

</Tabs>
</PageDefinitionSpec>

15. Save the Page Spec.

Task Spec

1. Right-click the project and select Add > New Item. The Add New Item screen appears.

2. From the Blackbaud AppFx Catalog items, select Task Spec.

3. Enter a name such as PlanStageDurationsOLTPReport.Task.xml.

W IRING UP THE REPORT 70

4. Click Add. the Task Spec appears.

71 CHAPTER 5

5. Adjust this information:

l Name: Prospect Plan Stage Durations Report (OLTP Version) Page Task

l Description: A task to display the Prospect Plan Stage Durations (OLTP Version) Report Page

l Author: Technical Training

l FunctionalAreaID: b6b9d7e7-c822-4bec-b223-dbe8635a5097

Note: This is the Prospects functional area.

To find this, look for the Prospects functional area in Administration > Application > Shell Design > Functional Areas. Then click View XML.

W IRING UP THE REPORT 72

73 CHAPTER 5

l Sequence: 1000

This is the Sequence number of the task with respect to other tasks, not the Sequence number for the functional area.

l ImageKey: Remove this attribute for now

W IRING UP THE REPORT 74

6. Replace <common:ShowPage PageID="REPLACE_WITH_PAGEID" /> with:

<common:ShowPage PageID="85ac7dd6-f479-47b0-ae92-4c8008132fc8" />

PageID is the ID for the page created in the previous section. It is the ID attribute ofPageDefinitionSpec for that page.

<TaskSpec
xmlns="bb_appfx_task"
xmlns:common="bb_appfx_commontypes"
ID="69c252bd-cbae-4bf2-b178-35df5e320b26"
Name="Prospect Plan Stage Durations Report (OLTP Version) Page Task"
Description="A task to display the Prospect Plan Stage Durations (OLTP Version) Report Page"
Author="Technical Training"
FunctionalAreaID="b6b9d7e7-c822-4bec-b223-dbe8635a5097"
Sequence="1000"
>

<!-- indicate what this task should do (navigate to a page, show a form, etc. -->
<common:ShowPage PageID="85ac7dd6-f479-47b0-ae92-4c8008132fc8" />

</TaskSpec>

7. Save the Task Spec.

Package Spec

1. Right-click the project and select Add > New Item. The Add New Item screen appears.

2. From the Blackbaud AppFx Catalog items, select Task Spec.

3. Enter a name such as PlanStageDurationsOLTPReport.Package.xml.

75 CHAPTER 5

4. Click Add. The Blackbaud Appfx PackageWizard appears.

5. Click Create a package spec that includes the selected specs from this project.

6. Select the Report Spec created in Create a Report Spec on page 54 and the Page Spec and Task Spec created in this topic.

W IRING UP THE REPORT 76

77 CHAPTER 5

7. Click OK. The Package Spec appears. With the comments about dependency order removed, the spec will look like this:

<PackageSpec
xmlns="bb_appfx_package"
xmlns:common="bb_appfx_commontypes"
ID="a34984f1-f1e7-4970-b16d-ecb929e02951"
Name="MajorGivingPlanStageDurations Package"
Description="REPLACE_WITH_DESCRIPTION"
Author="$author$"
>

<common:DependencyList>
<common:Dependency CatalogAssembly="MajorGivingPlanStageDurations.dll" Cat-

alogItem="MajorGivingPlanStageDurations.MajorGivingPlanStageDurations.Report.xml" />
<common:Dependency CatalogAssembly="MajorGivingPlanStageDurations.dll" Cat-

alogItem="MajorGivingPlanStageDurations.MajorGivingPlanStatusDurationsReport.Page.xml" />
<common:Dependency CatalogAssembly="MajorGivingPlanStageDurations.dll" Cat-

alogItem="MajorGivingPlanStageDurations.MajorGivingPlanStatusDurationsReport.Task.xml" />
</common:DependencyList>

</PackageSpec>

8. Adjust the Name, Description, and Author:

<PackageSpec
xmlns="bb_appfx_package"
xmlns:common="bb_appfx_commontypes"
ID="903fc809-1007-490a-8f5f-c5c646b3cdb1"
Name="Prospect Plan Status Durations (OLTP Version) Package"
Description="A package to load the artifacts for the OLTP version of the Prospect Plan Stage Durations

Report"
Author="Technical Training"
>

<common:DependencyList>
<common:Dependency CatalogAssembly="Custom.AppFx.PlanStageDurations.Catalog.dll" Cat-

alogItem="Custom.AppFx.PlanStageDurations.Catalog.PlanStageDurationsOLTP.Report.xml" />
<common:Dependency CatalogAssembly="Custom.AppFx.PlanStageDurations.Catalog.dll" Cat-

alogItem="Custom.AppFx.PlanStageDurations.Catalog.PlanStageDurationsOLTPReport.Page.xml" />

W IRING UP THE REPORT 78

<common:Dependency CatalogAssembly="Custom.AppFx.PlanStageDurations.Catalog.dll" Cat-
alogItem="Custom.AppFx.PlanStageDurations.Catalog.PlanStageDurationsOLTPReport.Task.xml" />

</common:DependencyList>

</PackageSpec>

9. Save the spec.

Load the Package
1. Build your Blackbaud AppFX Catalog project which contains the Report Spec, RDL file, Page Spec, Task

Spec, and Package Spec. Right-click the project and select Build.

2. Open the project folder in Windows Explorer and browse to the folder which contains the application
extension. Right-click the project and select, Open folder in Windows Explorer. Then browse to the bin
folder. For example:

C:\Team_Projects\Documentation\Technical_Train-
ing\Cu-
stom.AppFx.PlanStageDurations.Catalog\Custom.AppFx.PlanStageDurations.Catalog\bin\Debug

3. Copy the application extension DLL to the bin folder for the application instance. For example, copy:

Custom.AppFx.PlanStageDurations.Catalog.dll

To:

C:\Program Files\Blackbaud\bbappfx\vroot\bin

Note: You can add a post-build command to the project to perform these steps every time you build.
But you must ensure Visual Studio has rights to copy to the bin folder. For example, you may need to
run Visual Studio as an Administrator for that to work.

4. From the Blackbaud Infinity based application, browse to Administration > Application > Catalog
Browser.

5. Filter the items in the Catalog Browser for Type: Package and Source: <name of the DLL>

6. Click Apply.

7. Highlight the package and click Load item.

8. Once the package loads, browse to the Prospects functional area. The task to open the report appears
underMore tasks.

Note: Shown from the web shell.

79 CHAPTER 5

9. Click the task.

W IRING UP THE REPORT 80

81 CHAPTER 5

Polishing the Report
Formatting the Report 82

Adding Parameters 84

We have now created a report and Blackbaud Infinity specs to render the report in the application interface. But
the report itself is not finished. There is a single table that displays calculations of average durations for plan
stages in a table, one of the requirements in Prospect Plan Status Durations Report on page 11. No attention has
been given to the layout of the report and the format of the durations. Within these topics wewill format the
existing report. Since we have wired our report to display in the Infinity application, most of the formatting work
will be with the RDL file itself. But as we add parameters, we will return to the Blackbaud Infinity specs.

Formatting the Report
Wewon't delve into step-by-step instructions for formatting. The assumption is that the RDL editor comes with
sufficient documentation to guide you. What follows is some information specific to this example.

Design

The report will be formatted along these guidelines:

Report Item Guidelines

Report title
Arial 14pt Bold, White

Background bar 32px high, #4682B4, flush with edges

Report param-
eters

Arial, 9pt, DimGray (labels bold); background #F5F5F5

Report summary
Arial, 9pt, Black (labels bold); background #F5F5F5

Divider line between parameters and summary is 1pt #CCCCCC

Sub-report title
Arial, 11pt, White, Bold; Background #99B6CC, 24px high; 18px padding above bar

Used when the summary sub-report needs to be displayed/hidden as a parameter.

Column header
box

R244, G248, B251 (#F4F8FB); Border is R70 G130 B180 (#4682B4)

Top is 1pt, bottom is 2pt

Column header Arial, 9pt, Bold, R70 G130 B180 (#4682B4)

chapter 6

Report Item Guidelines

text

Report data

Arial, 9pt, Black

Report rows separated by a 1pt gray line (#EEEEEE)

Right-align numbers, currencies, dates, and times.

Left-align text and IDs (even if numeric).

Data group parent
rows

Arial, 9pt, Black; Background #F5F5F5

Sub totals Arial, 9pt, Black, Bold

Total
Arial, 10pt, Black, Bold

Top and bottom borders #4682B4

Footnotes Arial, 8pt, black

Footer
Tahoma, 7pt, black, light; background #F5F5F5, 18px tall

Footer contains date and time, prepared by and page number, as indicated below.

After first page
All pages should repeat the Title, Column headers and Footer. The summary panels and
footnotes should not repeat.

83 CHAPTER 6

POLISHING THE REPORT 84

Adding Parameters
The design stated: The report should be filterable by constituency of prospect, by prospect plan type, or both. So we need someway to parameterize con-
stituency or prospect plan type. Our example will only show prospect plan type.

For the overlapping perspective as we have it so far, there is no consideration for prospect plan type. Prospect plan type is stored as PROS-
PECTPLANTYPECODEID on the PROSPECTPLAN table. This is a foreign key to the PROSPECTPLANTYPECODE table, a code table for prospect plan
type codes.

Up until nowwe have avoided joins to the PROSPECTPLAN table in the stored procedures. This is made possible by using only the IDs for prospect
plans. The only inner join necessary was to PROSPECTPLANSTATUSCODE to get the friendly name for the prospect plan status code. Nowwe not only
need the prospect plan but the friendly name for the prospect plan type code. But we can avoid the join to PROSPECTPLANTYPECODE by placing that
lookup in the UI for the report.

To test the join, we can modify the query inside of the stored procedure and execute it in SQL Server Management Studio:

declare @PROSPECTPLANTYPECODEID uniqueidentifier;
set @PROSPECTPLANTYPECODEID = '92CEC00D-F9B3-4713-A1CD-A944B1C0D58F';
with [STEPS]
as (

select i.[PROSPECTPLANSTATUSCODEID],
i.[ACTUALENDDATETIME],
min(i.[ACTUALSTARTDATETIME]) over (

partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [FIRSTSTEPINSTAGEDATETIME],

max(i.[ACTUALENDDATETIME]) over (
partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [LASTSTEPINSTAGEDATETIME]

from [INTERACTION] as i inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1 and pl.[PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
)

select p.[DESCRIPTION] as [STAGENAME],
avg(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [AVGSTAGEDURATION],
min(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MINSTAGEDURATION],
max(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MAXSTAGEDURATION]

from [STEPS] as s

85 CHAPTER 6

inner join [PROSPECTPLANSTATUSCODE] as p on s.[PROSPECTPLANSTATUSCODEID] = p.[ID]
where (s.[ACTUALENDDATETIME] = s.[LASTSTEPINSTAGEDATETIME])
group by p.[DESCRIPTION]

This limits the query to prospect plans of typeMajor giving. The uniqueidentifier for theMajor giving plan type code is 92CEC00D-F9B3-
4713-A1CD-A944B1C0D58F. We don't need those first two lines in our actual stored procedure. Once we are satisfied with the results, we can
change the stored procedure to accept @PROSPECTPLANTYPECODEID as a parameter. Currently our stored procedures begin like this:

create procedure dbo.USR_USP_REPORT_PLANSTAGEDURATIONSOVERLAPPING
as

...

We can modify the beginning of the CREATE PROCEDURE statement to this:

create procedure dbo.USR_USP_REPORT_PLANSTAGEDURATIONSOVERLAPPING (@PROSPECTPLANTYPECODEID uniqueidentifier)
as

...

This example will pass one parameter, an ID for the prospect plan type code. This way the report can re-purposed for each type of prospect plan.

create procedure dbo.USR_USP_REPORT_PLANSTAGEDURATIONSOVERLAPPING (@PROSPECTPLANTYPECODEID uniqueidentifier)
as
with [STEPS]
as (

select i.[PROSPECTPLANSTATUSCODEID],
i.[ACTUALENDDATETIME],
min(i.[ACTUALSTARTDATETIME]) over (

partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [FIRSTSTEPINSTAGEDATETIME],

max(i.[ACTUALENDDATETIME]) over (
partition by i.[PROSPECTPLANID],
i.[PROSPECTPLANSTATUSCODEID]
) as [LASTSTEPINSTAGEDATETIME]

from [INTERACTION] as i inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1 and pl.[PROSPECTPLANTYPECODEID] = @PROSPECTPLANTYPECODEID
)

select p.[DESCRIPTION] as [STAGENAME],
avg(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [AVGSTAGEDURATION],

POLISHING THE REPORT 86

min(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MINSTAGEDURATION],
max(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MAXSTAGEDURATION]

from [STEPS] as s
inner join [PROSPECTPLANSTATUSCODE] as p on s.[PROSPECTPLANSTATUSCODEID] = p.[ID]
where (s.[ACTUALENDDATETIME] = s.[LASTSTEPINSTAGEDATETIME])
group by p.[DESCRIPTION]

Update the RDL File with the Parameter
In the RDL file, we need a to pass the parameter to the report so the report can pass the parameter to the stored
procedures.

That report parameter can gather the IDs from a Dataset. For example, a dataset which holds the IDs for the
PROSPECTPLANTYPECODE table.

The dataset can be a simple query of the PROSPECTPLANTYPECODE table.

87 CHAPTER 6

select [ID]
from [PROSPECTPLANTYPECODE]

POLISHING THE REPORT 88

Each of the datasets for the stored procedures can also have a parameter.

89 CHAPTER 6

Because the parameter is a uniqueidentifier, for the Parameter Value expression:

=Parameters!PROSPECTPLANTYPECODEID.Value

This does not match what appears in the Parameter Value field. But, if you click the function button to edit the
Parameter Value field with an expression editor, the above expression may appear. If that is not the expression,
the report may run, but the correct parameter valuemay or may not be passed.

You can preview the report in Business Intelligence Development Studio at this point. The parameter appears as
a drop-down of GUIDs.

Wewon't go beyond that for the RDL file. But we do have to create a friendly user interface to select those code
table entries in the Blackbaud Infinity application. For that, we will add a UI Model.

Add a UI Model for the Parameter

In the Report Spec, add form field information to map to the stored procedure parameter.

<common:FormMetaData>
<common:FormFields>
<common:FormField DataType="Guid" FieldID="PROSPECTPLANTYPECODEID"

Caption="Prospect Plan Type Code ID"
Required="true">

<common:CodeTable CodeTableName="PROSPECTPLANTYPECODE" />
</common:FormField>

</common:FormFields>

POLISHING THE REPORT 90

Reload the Report Spec into the catalog.

In your solution, create a newUI Model Project.

The project appears in the solution.

To the newUI Model project, add a UI Model. Right-click the project and select Add > New Item. The Add New
Item screen appears.

From the Add New Item screen, select Blackbaud AppFx Catalog > UI Model Wizard. You can leave the Name
field as the default.

91 CHAPTER 6

Click Add. The blackbaud AppFx UI ModelWizard appears.

POLISHING THE REPORT 92

Click the folder next to the Spec file field. The Open file dialog appears.

Browse to the Report Spec in your catalog project and click Open. The Spec file, namespace, and Class name
fields are populated.

Select Generate Html file for themodel.

Click OK. The UI model is added.

The Report Spec FormMetaData is updated to include this:

93 CHAPTER 6

<common:WebUIComponent>
<common:UIModel Assem-

blyName="ProspectPlanStatusDurations.UIModel.dll" Class-
Name="ProspectPlanStatusDurations.UIModel.ProspectPlanStatusDurations.ProspectPlanStatusDurationsReportUIModel"
/>

<common:WebUI>
<common:ExternalResource Url="browser/htmlforms/Pr-

ospectPlanStatusDurationsReport.html" />
</common:WebUI>

</common:WebUIComponent>

Create a folder called custom under prospectplanstatusdurations.

Drag ProspectPlanStatusDurationsReport.html to the custom folder.

Build the project.

Copy the DLL file to vroot\bin.

Copy the HTML file to vroot\browser\htmlforms ****

You can now view the parameterized report in the Blackbaud Infinity application.

POLISHING THE REPORT 94

To avoid themissing parameter message, in the Page Definition Spec:

<PageDefinitionSpec
xmlns="bb_appfx_pagedefinition"
xmlns:common="bb_appfx_commontypes"
ID="681D2833-9F76-4547-81C0-8840A24ECC5E"
Name="Prospect Plan Status Durations Report Page"
Description="A page to display the Prospect Plan Status Durations Report"
Author="Technical Training"
>

<PageHeader Caption="Prospect Plan Status Durations Report" />

<Tabs>
<Tab ID="DA7C37C0-59B8-40F1-80E8-B22A3D5E02B9" Caption="Prospect Plan Status

Durations">

<Sections>
<Section ID="A62F6D4A-E4B9-4183-B19A-5B49DE17C741" Caption="Prospect

Plan Status Durations">
<Report AutoLoad="false" ID="6C02DB4A-5032-4130-80BD-B99B0DCA192A"/>

</Section>
</Sections>

</Tab>
</Tabs>

</PageDefinitionSpec>

95 CHAPTER 6

ProspectPlanStatusDurationsReportUIModel.vb
Namespace ProspectPlanStatusDurations

Public Class ProspectPlanStatusDurationsReportUIModel

Private Sub ProspectPlanStatusDurationsReportUIModel_Loaded(ByVal sender As
Object, ByVal e As Blackbaud.AppFx.UIModeling.Core.LoadedEventArgs) Handles
Me.Loaded

End Sub

End Class

End Namespace

ProspectPlanStatusDurationsReport.html
<div id="#MAP#ProspectPlanStatusDurationsReport">
<table>
<tr id="#MAP#PROSPECTPLANTYPECODEID_container">
<td>
<label id="#MAP#PROSPECTPLANTYPECODEID_caption" for="#MAP#-

PROSPECTPLANTYPECODEID_value"></label>
</td>
<td>
<input id="#MAP#PROSPECTPLANTYPECODEID_value" type="text" />

</td>
</tr>

</table>
<!-- To define fields in multiple columns on the form, simply add/move the

fields to this div
<div class="bbui-forms-fieldset-column">

<table>
</table>

</div>
-->

</div>

POLISHING THE REPORT 96

97 CHAPTER 6

Reporting off the
Warehouse
Should the Report Query a Table or a View? 98

Something is Missing from the Table or View 99

Creating a Data Warehouse Version 100

Extending the Warehouse with a Table to Extend the Fact 102

Creating Another Data Warehouse Version 119

Extending the Data Warehouse with New Tables and Views 121

In this section, we discuss reports which query the data warehouse database. In Should the Report Query a Table
or a View? on page 98 and Something is Missing from the Table or View on page 99we cover some challenges. In
Creating a Data Warehouse Version on page 100 and Extending theWarehouse with a Table to Extend the Fact
on page 102, we describe the creation of a report and data warehouse extension to report using a query which is
similar to our OLTP version. In Creating Another Data Warehouse Version on page 119 and Extending the Data
Warehouse with New Tables and Views on page 121, we describe a more tailored extension and report.

Should the Report Query a Table or a View?
As of version 2.93 of Blackbaud CRM, the data warehouse tables include prospect plan status information for
interactions and prospect plans. But views in the warehouse do not. Views in Blackbaud Data Warehouse sup-
port access to warehouse data through a star schema. Stars for major giving and prospects functionality have
not been created. There are three options for reporting from the warehouse for this situation.

1. Query Blackbaud Data Warehouse tables through the report

2. Extend Blackbaud Data Warehouse with views of the tables and query the views

3. Extend Blackbaud Data Warehouse with new tables, views of the tables, and query the views

The preferred method to query Blackbaud Data Warehouse is through the views which establish the star
schema. If you report off of the tables directly, you run the risk of a breaking change to your report if those tables
are changed. Similarly, if you extend the warehouse to create a view of the existing tables, changes to the existing

chapter 7

tables may break the view extension and also break the report. However, in this situation, you could fix the view
instead of the report.

In order to reduce the number of potential break points due to future changes in Blackbaud Data Warehouse,
you could extend the warehouse with new tables and views to support prospect plan status.

To create an extension to Blackbaud Data Warehouse to support a view, you will minimally need a database
revisions extension to add the view. An database revision extension and an ETL extension is necessary if you add
a table. For information about how to extend Blackbaud Data Warehouse, see BBDW/OLAP Extensibility Model.

Note: Blackbaud Data Warehouse also supports OLAP extensions for the OLAP cube that is fed by the data
warehouse. But OLAP reporting and extensions are not within the scope of this discussion.

Something is Missing from the Table or View
With our prospect plan stage durations example, a data warehouse query can be built which is very similar to the
OLTP version. But some of the columns available in the OLTP database are not available in the data warehouse
database. For example, the OLTP INTERACTION table has columns for actual start datetime and actual end
datetime. But the fact and dimension tables only have one datetime column. That column corresponds to a col-
umn in the OLTP database which coalesces the actual start datetime and the expected start datetime. So that
leaves us with some choices to make. Here are some options.

Use what is there: The only end datetime needed is the end datetime for the last step in the plan. And the inter-
actions only have a day associated with them. So a useful metric can still be created. But it will not convey hours.
In this case, we could adapt the query to use the same date for the one place where end datetime is used. But it
would probably be better to rewrite the query altogether since the time parts are considered throughout. The
metric would show zero days rather than one day in many situations.

Create a new table to extend the fact and a view to join the fact to the new table: This requires extending the
data warehouse. But it is a fairly simple extension since we can base it on the existing table revision and SSIS pack-
age. It would allow us to model our data warehouse query on the OLTP query we already have. Unfortunately,
the data is spread across a fact table and a dimension table. So we need to create an extra join to make this work.
We can leave this to whoever uses the table or create a view to join the fact to the new table. Wewill see the ben-
efit of placing the reporting burden on the data warehouse rather than the transactional database. But the query
won't bemore efficient.

Note: If we were extending the OLAP cube, we could create a fact extension to accomplish this.

Create new tables and views tailored to the reporting needs: This requires extending the data warehouse. It
also requires thoughtful data modeling. And within this option, one needs to consider whether the extension will
only support the specific reporting needs at hand or if there will be other reporting needs down the road. For
example, with the prospect plan stage durations example, it is necessary to create sequences and many rows are
eliminated in the course of the query. The extension could reflect this to make the report more efficient. But is
would limit the functionality of the extension to support other reports.

99 CHAPTER 7

https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cocholapextensibiitymodel.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cocholapextensibiitymodel.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/cocholapextensibiitymodel.htm

REPORTING OFF THE WAREHOUSE 100

Creating a Data Warehouse Version
We could reusemany of the artifacts we created for the OLTP version. But to keep both versions, it may work better to create a new Page Spec, Task
Spec, and Report Spec. Since the process is the same, you can refer to Wiring up the Report on page 44. Firstly, we will show queries to the data ware-
house database which are constructed in the sameway as the OLTP version. There are threemain issues for our prospect plan status example:

1. Wemust query the tables rather than the views. This is because the views do not contain enough information.

2. The tables themselves aremissing a date column used in the transactional version. We can still create a useful metric without this column. But it
would require revamping the approach. These sections highlight those locations in the queries: Overlapping Perspective which Mirrors the OLTP
version on page 100 and Creating a Data Warehouse Version on page 100. In Extending theWarehouse with a Table to Extend the Fact on page
102, we describe the creation of an extension which allows us to mirror the OLTP version completely.

3. An extra join is required because information is spread across a fact and dimension table. In another section, Creating Another Data Warehouse
Version on page 119 and Extending the Data Warehouse with New Tables and Views on page 121, wewill explore a more tailored approach.

Overlapping Perspective which Mirrors the OLTP version

The warehouse has analogous tables for INTERACTION, PROSPECTPLAN, and PROSPECTPLANSTATUS. For the overlapping perspective, it is pos-
sible to create a very similar query. But the actual end datetime does not exist. So, the closest we can get is with INTERACTIONDATE, in the OLTP data-
base and the data warehouse database, this is created through a COALESCE of the actual and expected datetimes. Wewill describe extending the data
warehouse to overcome this. But for reference, this is what the query would look like INTERACTIONDATE was used for actual start datetime and actual
end datetime. Again, if we were limited to just that datetime, it would be better to revamp the query to only consider days or to extend the warehouse to
include actual start datetime and actual end datetime.

with [STEPS]
as (

select i.[PROSPECTPLANSTATUSDIMID],
i.[INTERACTIONDATE],
min(i.[INTERACTIONDATE]) over (

partition by i.[PROSPECTPLANDIMID],
i.[PROSPECTPLANSTATUSDIMID]
) as [FIRSTSTEPINSTAGEDATETIME],

max(i.[INTERACTIONDATE]) over (
partition by i.[PROSPECTPLANDIMID],

101 CHAPTER 7

i.[PROSPECTPLANSTATUSDIMID]
) as [LASTSTEPINSTAGEDATETIME]

from [BBDW].[FACT_INTERACTION] as i
inner join [BBDW].[DIM_INTERACTION] as j on i.[INTERACTIONDIMID] = j.[INTERACTIONDIMID]
where j.[ISINTERACTIONCOMPLETED] = 1
)

select p.[PROSPECTPLANSTATUS] as [STAGENAME],
avg(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [AVGSTAGEDURATION],
min(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MINSTAGEDURATION],
max(cast((s.[LASTSTEPINSTAGEDATETIME] - s.[FIRSTSTEPINSTAGEDATETIME]) as float)) as [MAXSTAGEDURATION]

from [STEPS] as s
inner join [BBDW].[DIM_PROSPECTPLANSTATUS] as p on s.[PROSPECTPLANSTATUSDIMID] = p.[PROSPECTPLANSTATUSDIMID]
where (s.[INTERACTIONDATE] = s.[LASTSTEPINSTAGEDATETIME])
group by p.[PROSPECTPLANSTATUS]

REPORTING OFF THE WAREHOUSE 102

Extending the Warehouse with a Table to Extend the Fact
The tables used by our queries were described in Finding Data in the Data Warehouse Database on page 24. Those tables are insufficient for our design
requirements because they do not include actual start datetime and actual end datetime. We don't want to alter that table because it is possible the table
will be updated in a subsequent release of Blackbaud Data Warehouse. Instead, we are going to create a new table with the actual start datetime and
actual end datetimewhich we can join to the existing fact table in queries.

Note: Another approach would be to replicate the FACT_INTERACTION table with the addition of those columns. This would have the advantage of
avoiding an extra join in the report queries. But it would require more complex database revisions and ETL logic in the SSIS packages. Also, it increases
risk because so many INTERACTION columns now require updates in two tables.

File for Revisions

If you don't already have a file for revisions, create an XML file with these contents:

<?xml version="1.0" ?>
<DBRevisions xmlns="bb_appfx_dbrevisions">

<DBRevision ID="1">
<Comment>Extended Database Schema</Comment>

</DBRevision>

<DBRevision ID="5">
<ExecuteSql>

<![CDATA[
if not exists (

select *
from sysobjects so
where so.type = 'P'

and so.name = 'RESETETL_EXT'
)

exec sp_executesql N'create procedure BBDW.[RESETETL_EXT] as set nocount on;'
]]>

</ExecuteSql>
</DBRevision>

103 CHAPTER 7

</DBRevisions>

Name the file according to the naming convention for revisions extensions.

CREATE TABLE Revision

Wewill call the table FACT_INTERACTIONACTUALTIMES_EXT. One of the revisions we need is the revision which actually creates the table. Since
we are replicating some of the FACT_INTERACTION table, we can grab some of that from SQL Server Management Studio. After opening SSMS, we
can connect to the database and filter the tables for FACT_INTERACTION. To filter the tables for a database, right-click the Tables node for the data-
base in Object Explorer and select Filter > Filter Settings.

In theName field of the Filter Settings screen that appears, enter FACT_INTERACTION and click OK.

REPORTING OFF THE WAREHOUSE 104

From the filtered list, right-click FACT_INTERACTION and select Script Table as > CREATE To > New Query Editor Window.

105 CHAPTER 7

The part we need is the CREATE TABLE statement.

Copy this into the query editor.

CREATE TABLE [BBDW].[FACT_INTERACTION](
[INTERACTIONFACTID] [int] IDENTITY(1,1) NOT NULL,

REPORTING OFF THE WAREHOUSE 106

[INTERACTIONSYSTEMID] [uniqueidentifier] NULL,
[CONSTITUENTDIMID] [int] NULL,
[CONSTITUENTSYSTEMID] [uniqueidentifier] NULL,
[FUNDRAISERDIMID] [int] NULL,
[FUNDRAISERSYSTEMID] [uniqueidentifier] NULL,
[INTERACTIONDATEDIMID] [int] NULL,
[INTERACTIONDATE] [datetime] NULL,
[INTERACTIONDIMID] [int] NULL,
[EVENTDIMID] [int] NULL,
[PROSPECTPLANDIMID] [int] NULL,
[PLANOUTLINESTEPDIMID] [int] NULL,
[PROSPECTPLANSTATUSDIMID] [int] NULL,
[FUNDINGREQUESTDIMID] [int] NULL,
[FUNDINGREQUESTOUTLINESTEPDIMID] [int] NULL,
[INTERACTIONLOOKUPID] [nvarchar](100) NULL,
[INTERACTIONOBJECTIVE] [nvarchar](100) NULL,
[ISINCLUDED] [bit] NULL,
[ETLCONTROLID] [int] NULL,
[SOURCEDIMID] [int] NULL,

CONSTRAINT [PK_FACT_INTERACTION] PRIMARY KEY CLUSTERED
(

[INTERACTIONFACTID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS =
ON) ON [BBRPT_FACTGROUP]
) ON [BBRPT_FACTGROUP]

Firstly, we already have a FACT_INTERACTION table, so we need to change that name. And we don't need the contents of the WITH clause. But we
should leave the CONSTRAINT but change the name. and the ON for the fact group. Let's also reformat those keywords to lower-case since that is how
the rest of our Transact-SQL looks. As for the columns:

l Add the columns for actual start datetime and actual end datetime.

l Change INTERACTIONFACTID and INTERACTIONSYSTEMID to INTERACTIONACTUALTIMESFACTID and INTER-
ACTIONACTUALTIMESSYSTEMID.

l Retain ISINCLUDED, ETLCONTROLID, and SOURCEDIMID.

l Remove all other fields.

<DBRevision ID="10">
<ExecuteSql>

107 CHAPTER 7

<![CDATA[
create table [BBDW].[FACT_INTERACTIONACTUALTIMES_EXT] (

[INTERACTIONACTUALTIMESFACTID] [int] IDENTITY(1, 1) not null,
[INTERACTIONACTUALTIMESSYSTEMID] [uniqueidentifier] null,
[ACTUALSTARTDATETIME] [datetime] null,
[ACTUALSTARTDATEDIMID] [int] null,
[ACTUALENDDATETIME] [datetime] null,
[ACTUALENDDATEDIMID] [int] null,
[ISINCLUDED] [bit] null,
[ETLCONTROLID] [int] null,
[SOURCEDIMID] [int] null,
constraint [PK_FACT_INTERACTIONACTUALTIMES_EXT] primary key clustered ([INTERACTIONACTUALTIMESFACTID] asc)
) on [BBRPT_FACTGROUP]

]]>
</ExecuteSql>

</DBRevision>

Drop and Create Indexes Revision for Extension Table

There should be nonclustered indexes on the date dimension columns. These need to be dropped and added as a part of the ETL process. This creates a
stored procedure for that.

<DBRevision ID="15">
<ExecuteSql>
<![CDATA[

create procedure [BBDW].[CREATE_OR_DROP_FACT_INTERACTIONACTUALTIMES_EXT_INDICES] @CREATE_OR_DROP bit --1 to create, 0 to
drop.
as
set nocount on;

if @CREATE_OR_DROP is null
raiserror (

'@CREATE_OR_DROP must be 1 or 0 in [BBDW].[CREATE_OR_DROP_FACT_INTERACTIONACTUALTIMES_EXT_INDICES]',
16,
10
);

if @CREATE_OR_DROP = 1
begin

REPORTING OFF THE WAREHOUSE 108

--create
if [BBDW].[UFN_INDEXEXISTS]('IX_FACT_INTERACTIONACTUALTIMES_EXT_ACTUALSTARTDATETIMEDIMID') = 0

create nonclustered index [IX_FACT_INTERACTIONACTUALTIMES_EXT_ACTUALSTARTDATETIMEDIMID] on [BBDW].[FACT_INTER-
ACTIONACTUALTIMES_EXT] ([ACTUALSTARTDATEDIMID]) on [BBRPT_DIMIDXGROUP]

if [BBDW].[UFN_INDEXEXISTS]('IX_FACT_INTERACTIONACTUALTIMES_EXT_ACTUALENDDATETIMEDIMID') = 0
create nonclustered index [IX_FACT_INTERACTIONACTUALTIMES_EXT_ACTUALENDDATETIMEDIMID] on [BBDW].[FACT_INTER-

ACTIONACTUALTIMES_EXT] ([ACTUALENDDATEDIMID]) on [BBRPT_DIMIDXGROUP]
end
else
begin

--drop
if [BBDW].[UFN_INDEXEXISTS]('IX_FACT_INTERACTIONACTUALTIMES_EXT_ACTUALSTARTDATETIMEDIMID') = 1

drop index [IX_FACT_INTERACTIONACTUALTIMES_EXT_ACTUALSTARTDATETIMEDIMID] on [BBDW].[FACT_INTERACTIONACTUALTIMES_EXT];

if [BBDW].[UFN_INDEXEXISTS]('IX_FACT_INTERACTIONACTUALTIMES_EXT_ACTUALENDDATETIMEDIMID') = 1
drop index [IX_FACT_INTERACTIONACTUALTIMES_EXT_ACTUALENDDATETIMEDIMID] on [BBDW].[FACT_INTERACTIONACTUALTIMES_EXT];

end
]]>

</ExecuteSql>
</DBRevision>

CREATE TABLE Revision for Staging Table

The staging table has the same columns. Copy the revision for themain table and change the DBRevision ID and add _STAGE where the table name
is used. This includes the constraint.

<DBRevision ID="20">
<ExecuteSql>
<![CDATA[

create table [BBDW].[FACT_INTERACTIONACTUALTIMES_EXT_STAGE] (
[INTERACTIONACTUALTIMESSYSTEMID] [uniqueidentifier] null,
[ACTUALSTARTDATETIME] [datetime] null,
[ACTUALSTARTDATEDIMID] [int] null,
[ACTUALENDDATETIME] [datetime] null,
[ACTUALENDDATEDIMID] [int] null,
[ISINCLUDED] [bit] null,
[ETLCONTROLID] [int] null,
[SOURCEDIMID] [int] null

109 CHAPTER 7

) on [BBRPT_STAGEGROUP]
]]>

</ExecuteSql>
</DBRevision>

Drop and Create Indexes Revision for Staging Table

There should be an index on the INTERACTIONACTUALTIMESSYSTEMID. These need to be dropped and added as a part of the ETL process. This
creates a stored procedure for that.

<DBRevision ID="25">
<ExecuteSql>
<![CDATA[

create procedure [BBDW].[CREATE_OR_DROP_FACT_INTERACTIONACTUALTIMES_EXT_STAGE_INDICES] @CREATE_OR_DROP bit --1 to
create, 0 to drop.
as
set nocount on;

if @CREATE_OR_DROP is null
raiserror (

'@CREATE_OR_DROP must be 1 or 0 in [BBDW].[CREATE_OR_DROP_FACT_INTERACTIONACTUALTIMES_EXT_STAGE_INDICES]',
16,
10
);

if @CREATE_OR_DROP = 1
begin

--create
if [BBDW].[UFN_INDEXEXISTS]('IX_FACT_INTERACTIONACTUALTIMES_EXT_STAGE_INTERACTIONACTUALTIMESSYSTEMID') = 0

create nonclustered index [IX_FACT_INTERACTIONACTUALTIMES_EXT_STAGE_INTERACTIONACTUALTIMESSYSTEMID] on [BBDW].[FACT_
INTERACTIONACTUALTIMES_EXT_STAGE] ([INTERACTIONACTUALTIMESSYSTEMID]) on [BBRPT_STAGEGROUP]
end
else
begin

--drop
if [BBDW].[UFN_INDEXEXISTS]('IX_FACT_INTERACTIONACTUALTIMES_EXT_STAGE_INTERACTIONACTUALTIMESSYSTEMID') = 1

drop index [IX_FACT_INTERACTIONACTUALTIMES_EXT_STAGE_INTERACTIONACTUALTIMESSYSTEMID] on [BBDW].[FACT_INTER-
ACTIONACTUALTIMES_EXT_STAGE];
end

REPORTING OFF THE WAREHOUSE 110

]]>
</ExecuteSql>

</DBRevision>

Truncate Tables and Drop Indexes Revision
<DBRevision ID="30">
<ExecuteSql>
<![CDATA[

alter procedure BBDW.[RESETETL_EXT]
as
set nocount on;

truncate table BBDW.[FACT_INTERACTIONACTUALTIMES_EXT];

exec BBDW.[CREATE_OR_DROP_FACT_INTERACTIONACTUALTIMES_EXT_INDICES] 0;

truncate table BBDW.[FACT_INTERACTIONACTUALTIMES_EXT_STAGE];

exec BBDW.[CREATE_OR_DROP_FACT_INTERACTIONACTUALTIMES_EXT_STAGE_INDICES] 0;
]]>

</ExecuteSql>
</DBRevision>

CREATE VIEW Revision

Since the data warehouse creates a star schema using views, it is helpful to add a view to support that.

<DBRevision ID="35">
<ExecuteSql>
<![CDATA[

create view [BBDW].[v_FACT_INTERACTIONACTUALTIMES_EXT]
as
select [BBDW].[FACT_INTERACTIONACTUALTIMES_EXT].[INTERACTIONACTUALTIMESFACTID],

[BBDW].[FACT_INTERACTIONACTUALTIMES_EXT].[INTERACTIONACTUALTIMESSYSTEMID],
[BBDW].[FACT_INTERACTION].[CONSTITUENTDIMID],
[BBDW].[FACT_INTERACTION].[CONSTITUENTSYSTEMID],

111 CHAPTER 7

[BBDW].[FACT_INTERACTION].[FUNDRAISERDIMID],
[BBDW].[FACT_INTERACTION].[FUNDRAISERSYSTEMID],
[BBDW].[FACT_INTERACTION].[INTERACTIONDATEDIMID],
[BBDW].[FACT_INTERACTION].[INTERACTIONDATE],
[BBDW].[FACT_INTERACTIONACTUALTIMES_EXT].[ACTUALSTARTDATETIME],
[BBDW].[FACT_INTERACTIONACTUALTIMES_EXT].[ACTUALSTARTDATEDIMID],
[BBDW].[FACT_INTERACTIONACTUALTIMES_EXT].[ACTUALENDDATETIME],
[BBDW].[FACT_INTERACTIONACTUALTIMES_EXT].[ACTUALENDDATEDIMID],
[BBDW].[FACT_INTERACTION].[INTERACTIONDIMID],
[BBDW].[FACT_INTERACTION].[EVENTDIMID],
[BBDW].[FACT_INTERACTION].[PROSPECTPLANDIMID],
[BBDW].[FACT_INTERACTION].[PLANOUTLINESTEPDIMID],
[BBDW].[FACT_INTERACTION].[PROSPECTPLANSTATUSDIMID],
[BBDW].[FACT_INTERACTION].[FUNDINGREQUESTDIMID],
[BBDW].[FACT_INTERACTION].[FUNDINGREQUESTOUTLINESTEPDIMID],
[BBDW].[FACT_INTERACTION].[INTERACTIONLOOKUPID],
[BBDW].[FACT_INTERACTION].[INTERACTIONOBJECTIVE]

from [BBDW].[FACT_INTERACTION]
left join [BBDW].[FACT_INTERACTIONACTUALTIMES_EXT] on [BBDW].[FACT_INTERACTION].[INTERACTIONSYSTEMID] = [BBDW].[FACT_
INTERACTIONACTUALTIMES_EXT].[INTERACTIONACTUALTIMESSYSTEMID]
]]>

</ExecuteSql>
</DBRevision>

Map Source to Target Revision

This revision adds MS_Description comments to the table.

<DBRevision ID="40">
<ExecuteSql>
<![CDATA[

exec BBDW.USP_SCHEMA_TABLE_SETTABLECOMMENT 'FACT_INTERACTIONACTUALTIMES_EXT',
'The Interaction Actual Times fact contains actual start and end datetimes for interactions.
The table can be joined to the Interaction fact which relates information to constituent interactions.
The v_FACT_INTERACTIONACTUALTIMES_EXT view does this.';

exec BBDW.USP_SCHEMA_TABLE_SETCOLUMNCOMMENT 'MS_Description',
'FACT_INTERACTIONACTUALTIMES_EXT',
'INTERACTIONACTUALTIMESFACTID',

REPORTING OFF THE WAREHOUSE 112

'Surrogate key for Interaction fact.';

exec BBDW.USP_SCHEMA_TABLE_SETCOLUMNCOMMENT 'MS_Description',
'FACT_INTERACTIONACTUALTIMES_EXT',
'INTERACTIONACTUALTIMESSYSTEMID',
'dbo.[INTERACTION].[INTERACTIONID]';

exec BBDW.USP_SCHEMA_TABLE_SETCOLUMNCOMMENT 'MS_Description',
'FACT_INTERACTIONACTUALTIMES_EXT',
'ACTUALSTARTDATETIME',
'dbo.[INTERACTION].[ACTUALSTARTDATETIME]';

exec BBDW.USP_SCHEMA_TABLE_SETCOLUMNCOMMENT 'MS_Description',
'FACT_INTERACTIONACTUALTIMES_EXT',
'ACTUALENDDATETIME',
'dbo.[INTERACTION].[ACTUALENDDATETIME]';

exec BBDW.USP_SCHEMA_TABLE_SETCOLUMNCOMMENT 'MS_Description',
'FACT_INTERACTIONACTUALTIMES_EXT',
'ISINCLUDED',
'Flag indicating when data should be included in results.';

exec BBDW.USP_SCHEMA_TABLE_SETCOLUMNCOMMENT 'MS_Description',
'FACT_INTERACTIONACTUALTIMES_EXT',
'ETLCONTROLID',
'ID generated through the ETL process';

exec BBDW.USP_SCHEMA_TABLE_SETCOLUMNCOMMENT 'MS_Description',
'FACT_INTERACTIONACTUALTIMES_EXT',
'SOURCEDIMID',
'Source system used';

]]>
</ExecuteSql>

</DBRevision>

Create the Project and Compile the Revisions to a DLL

If you don't already have a project for revisions extensions, create one.

113 CHAPTER 7

Create the ETL for the New Table

1. Open Business Intelligence Development Studio.

2. Open the template DTSX file, BBDW_FACT_TEMPLATE.

a. Click File > Open > File.

b. Browse to C:\Program Files\Blackbaud\bbappfx\MSBuild\Datamarts\BBDW\SSIS\BBDW_FACT_TEM-
PLATE.dtsx.

Note: The location may be different for your installation.

c. Click Open.

3. Save a copy in the Extend\SSIS folder.

a. Click File > Save Copy of BBDW_FACT_TEMPLATE.dtsx As...

b. The Save Copy of Package screen appears.

c. From Package location, select File System.

d. Click the ellipses button next to the field for Package path. The Save Package To File screen appears.

e. Browse to C:\Program Files\Blackbaud\bbappfx\MSBuild\Datamarts\BBDW\Extend\SSIS.

Note: The location may be different for your installation.

f. Change the name to BBDW_FACT_INTERACTIONACTUALTIMES_EXT.

g. Click Save.

4. Change the Truncate Staging task.

REPORTING OFF THE WAREHOUSE 114

On the Control Flow tab for the package designer, double-click the Truncate Staging task in the Load Rows sequence. The Execute SQL Task Editor
screen appears.

From General > SQL Statement > SQLStatement, change the query to:

truncate table BBDW.[FACT_INTERACTIONACTUALTIMES_EXT_STAGE];

exec BBDW.[CREATE_OR_DROP_FACT_INTERACTIONACTUALTIMES_EXT_STAGE_INDICES] 0;

Click OK.

5. Change the Load Changed Rows task.

Note: If you see a red x, it may be because the Connection Mangers are not configured for your databases. To fix, this click the BBETL_DB_
CONN_DW and BBETL_DB_CONN_OLTP connection managers on the Connection Managers tab and reconfigure them.

a. On the Control Flow tab for the package designer, double-click the Load Changed Rows task. The Data Flow appears.

Double-click New and changed rows from OLTP. The OLE DB Source Editor appears.

Change the SQL command text to:

select
i.[ID] as [INTERACTIONACTUALTIMESSYSTEMID],
i.[ACTUALSTARTDATETIME] as [ACTUALSTARTDATETIME],
i.[ACTUALENDDATETIME] as [ACTUALENDDATETIME],
1 as [ISINCLUDED]

from dbo.[INTERACTION] as i
where (i.[DATECHANGED] > ? and i.[DATECHANGED] <= ?)

b. Double-click the Date Dims Data Flow Component. The Restore Invalid Column References Editor appears.

Remove all of the invalid references and click OK.

Double-click the Date Dims Data Flow Component again. The Derived Column Transformation Editor appears.

Copy the Expression in the grid:

115 CHAPTER 7

ISNULL(INTERACTIONRESPONSEDATE) ? 0 : YEAR(INTERACTIONRESPONSEDATE) * 10000 + MONTH(INTER-
ACTIONRESPONSEDATE) * 100 + DAY(INTERACTIONRESPONSEDATE)

Add two new derived columns:

ACTUALSTARTDATEDIMID

ACTUALENDDATEDIMID

Adjust the expression you copied for each of these and paste the revised expressions into the Expression fields.

ISNULL(ACTUALSTARTDATETIME) ? 0 : YEAR(ACTUALSTARTDATETIME) * 10000 + MONTH(ACTUALSTARTDATETIME) * 100 +
DAY(ACTUALSTARTDATETIME)

ISNULL(ACTUALENDDATETIME) ? 0 : YEAR(ACTUALENDDATETIME) * 10000 + MONTH(ACTUALENDDATETIME) * 100 + DAY
(ACTUALENDDATETIME)

c. Remove the Check Dates Data Flow Component. Click Check Dates and press Delete.

d. Remove the Lookup Response Data Flow Component. Click Lookup Response and press Delete.

e. Remove the invalid column references in Stage Rows from the template.

Double-click the Stage Rows Data Flow Component. The Restore Invalid Column References Editor screen appears.

Delete the template columns. Select all of the rows and from Column mapping option for selected rows, select <Delete invalid column ref-
erence>.

Click OK.

f. Double-click the Stage Rows Data Flow Component again. The OLE DB Destination Editor appears.

Ensure the BBETL_DB_CONN_DW connection manager is selected under OLE DB connection manager.

From Name of the table or the view, select [BBDW].[FACT_INTERACTIONACTUALTIMES_EXT_STAGE].

ClickMappings. Themapping should be established for every column except INTERACTIONACTUALTIMESFACTID.

Click OK.

g. Save the package.

6. Change the Adding Staging Indices task.

REPORTING OFF THE WAREHOUSE 116

a. Return to the Control Flow tab.

b. Double-click the Adding Staging Indices task.

c. From General > SQL Statement > SQLStatement, change the query to:

exec BBDW.[CREATE_OR_DROP_FACT_INTERACTIONACTUALTIMES_EXT_STAGE_INDICES] 1;

d. Click OK.

7. Change the Upsert task.

a. Connect Adding Staging Indices task to Upsert task

b. Double-click Upsert. The Execute SQL Task editor screen appears.

c. From General > SQL Statement > SQLStatement, change the query to:

declare @COUNTS table (
[ACTION] varchar(28),
[INSERTED] int,
[UPDATED] int
);

merge BBDW.[FACT_INTERACTIONACTUALTIMES_EXT] as t
using (

select i.[INTERACTIONACTUALTIMESSYSTEMID],
i.[ACTUALSTARTDATETIME],
i.[ACTUALSTARTDATEDIMID],
i.[ACTUALENDDATETIME],
i.[ACTUALENDDATEDIMID],
i.[ISINCLUDED],
i.[ETLCONTROLID],
i.[SOURCEDIMID]

from BBDW.[FACT_INTERACTIONACTUALTIMES_EXT_STAGE] as i
) as s
on (t.[INTERACTIONACTUALTIMESSYSTEMID] = s.[INTERACTIONACTUALTIMESSYSTEMID])

117 CHAPTER 7

when not matched by target
then

insert (
[INTERACTIONACTUALTIMESSYSTEMID],
[ACTUALSTARTDATETIME],
[ACTUALSTARTDATEDIMID],
[ACTUALENDDATETIME],
[ACTUALENDDATEDIMID],
[ISINCLUDED],
[ETLCONTROLID],
[SOURCEDIMID]
)

values (
s.[INTERACTIONACTUALTIMESSYSTEMID],
s.[ACTUALSTARTDATETIME],
s.[ACTUALSTARTDATEDIMID],
s.[ACTUALENDDATETIME],
s.[ACTUALENDDATEDIMID],
s.[ISINCLUDED],
s.[ETLCONTROLID],
s.[SOURCEDIMID]
)

when matched
then

update
set t.[INTERACTIONACTUALTIMESSYSTEMID] = s.[INTERACTIONACTUALTIMESSYSTEMID],

t.[ACTUALSTARTDATETIME] = s.[ACTUALSTARTDATETIME],
t.[ACTUALSTARTDATEDIMID] = s.[ACTUALSTARTDATEDIMID],
t.[ACTUALENDDATEDIMID] = s.[ACTUALENDDATEDIMID],
t.[ISINCLUDED] = s.[ISINCLUDED],
t.[ETLCONTROLID] = s.[ETLCONTROLID],
t.[SOURCEDIMID] = s.[SOURCEDIMID]

output $action,
case

when deleted.[ETLCONTROLID] is null
then 1

else 0
end,

case
when deleted.[ETLCONTROLID] is not null

REPORTING OFF THE WAREHOUSE 118

then 1
else 0
end

into @COUNTS;

select count(*) as [TOTAL],
isnull(sum([INSERTED]), 0) as [INSERTED],
isnull(sum([UPDATED]), 0) as [UPDATED]

from @COUNTS

d. Click OK.

8. Change the Adding Indices task.

a. Double-click Adding Indices. The Execute SQL Task editor screen appears.

b. From General > SQL Statement > SQLStatement, change the statement to:

exec BBDW.[CREATE_OR_DROP_FACT_INTERACTIONACTUALTIMES_EXT_INDICES] 1;

9. Adjust the package properties.

a. Go to the Package Explorer tab.

b. Right-click the package and select Properties.

c. From ID, click the drop-down and select Generate New ID.

d. Change the name to BBDW_FACT_INTERACTIONACTUALTIMES_EXT.

e. Save the package file.

10. Copy the package to the SSIS folder for extensions:

C:\Program Files\Blackbaud\bbappfx\MSBuild\Datamarts\BBDW\Extend\SSIS

11. Update the packagemanifest (BBDW_PackageList_EXT.txt):

C:\Program Files\Blackbaud\bbappfx\MSBuild\Datamarts\BBDW\Extend\SSIS

119 CHAPTER 7

"Enabled","Package"
"1","BBDW_FACT_INTERACTIONACTUALTIMES_EXT.dtsx"

Deploy and Refresh the Warehouse

For information about how to deploy and refresh the warehouse, see the online guides at Blackbaud Data Warehouse.

Change the Report

As discussed in Creating a Data Warehouse Version on page 100, the query on which the report relies can follow the same structure as the transactional
database version. The difference here is the data warehouse version queries the a view created through data warehouse extensions and the stored pro-
cedures used by the RDL dataset are created through these revisions instead of a through the Report Spec.

Creating Another Data Warehouse Version
The goal of this version is to migrate the granularity logic in the stored procedures for the other versions of the report from the stored procedures to the
ETL process. The load step in the SSIS packages look similar to the common table expressions in the OLTP version of the stored procedure for the report.
What follows is the Transact-SQL for the load step for the stage occurrence package. The SSIS package will convert the data gathered from this query into
rows for new tables defined in a set of data warehouse revisions extensions.

with [STEPS]
as (

select row_number() over (
order by i.[PROSPECTPLANID],

i.[ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],

i.[ACTUALSTARTDATETIME],
i.[ACTUALENDDATETIME],
i.[PROSPECTPLANID],
max(i.[ACTUALENDDATETIME]) over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i.[PROSPECTPLANSTATUSCODEID]

from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1

https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/welcomebbdwsdk.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/welcomebbdwsdk.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/welcomebbdwsdk.htm

REPORTING OFF THE WAREHOUSE 120

),
[STAGEOCCURRENCESFIRSTPASS]
as (

select s.[ACTUALSTARTDATETIME],
s.[ACTUALENDDATETIME],
r.[PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
s.[PROSPECTPLANSTATUSCODEID],
r.[PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
s.[PROSPECTPLANID],
s.[LASTSTEPINPLANENDDATETIME]

from [STEPS] as s
left join [STEPS] as t on s.[ALLSTEPSEQUENCENUMBER] + 1 = t.[ALLSTEPSEQUENCENUMBER]
left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.[ALLSTEPSEQUENCENUMBER]
),

[STAGEOCCURRENCES]
as (

select row_number() over (
order by sofp.[PROSPECTPLANID],

sofp.[ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],

sofp.[ACTUALSTARTDATETIME],
sofp.[ACTUALENDDATETIME],
sofp.[LASTSTEPINPLANENDDATETIME],
sofp.[PROSPECTPLANID],
sofp.[PROSPECTPLANSTATUSCODEID],
pl.[PROSPECTPLANTYPECODEID],
pl.[PROSPECTID]

from [STAGEOCCURRENCESFIRSTPASS] as sofp
inner join [PROSPECTPLAN] pl on sofp.[PROSPECTPLANID] = pl.[ID]
where sofp.[PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]

or (
(sofp.[PROSPECTPLANSTATUSCODEID] <> sofp.[PREVIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)

)
select so1.[ACTUALSTARTDATETIME] as [STARTDATETIME],

so1.[ACTUALENDDATETIME] as [ENDDATETIME],
"STAGEOCCURRENCEDURATION" = case

when so1.[ACTUALENDDATETIME] <> so1.[LASTSTEPINPLANENDDATETIME]
then so2.[ACTUALSTARTDATETIME] - so1.[ACTUALSTARTDATETIME]

when so1.[ACTUALENDDATETIME] = so1.[LASTSTEPINPLANENDDATETIME]

121 CHAPTER 7

then so1.[ACTUALENDDATETIME] - so1.[ACTUALSTARTDATETIME]
end,

so1.[PROSPECTPLANID] as [PROSPECTPLANSYSTEMID],
so1.[PROSPECTPLANSTATUSCODEID] as [PROSPECTPLANSTATUSSYSTEMID],
so1.[PROSPECTPLANTYPECODEID] as [PROSPECTPLANTYPESYSTEMID],
so1.[PROSPECTID] as [CONSTITUENTSYSTEMID],
1 as ISINCLUDED

from [STAGEOCCURRENCES] as so1
left join [STAGEOCCURRENCES] as so2 on so1.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so2.ALLSTAGEOCCURRENCESSEQUENCENUMBER

Extending the Data Warehouse with New Tables and Views
The goal of these extensions is to create structures which represent prospect plan stages and prospect plan stage occurrences. The overlapping per-
spective and the nonconsecutive perspective aggregates can be calculated from a table which contains rows which each represent a stage in a prospect
plan. The consecutive perspective aggregates can be calculated from a table which contains rows which each represent a stage occurrence. Each row
should include duration information for the perspectives in addition to the start and end times and dimension IDs for prospect plans and constituents.

Note: It is possible to implement the stored procedures for the reports through revisions also. The sample implements them from the Report Spec. The
deciding factor was the ability to update the stored procedure through loading the spec as opposed to deploying the data warehouse. However, load-
ing the stored procedures through revisions would overcome the issue caused when the spec loading mechanism overrides the data source defined in
the RDL file. So if you want to use data sets with different data sources in your RDL file, loading the stored procedures accessed by those data sets
through revisions is a way to avoid configuring the data sources in Reporting Services after loading the spec.

Create Table Revision for Stage Occurrence (used by Consecutive Perspective)
<DBRevision ID="10">
<ExecuteSql>
<![CDATA[

create table [BBDW].[FACT_PROSPECTPLANSTAGEOCCURRENCE_EXT] (
[PROSPECTPLANSTAGEOCCURRENCEFACTID] [int] IDENTITY(1, 1) not null,
[STARTDATETIME] [datetime] null,
[STARTDATEDIMID] [int] null,
[ENDDATETIME] [datetime] null,
[ENDDATEDIMID] [int] null,
[STAGEOCCURRENCEDURATION] [datetime] null,

REPORTING OFF THE WAREHOUSE 122

[PROSPECTPLANSYSTEMID] [uniqueidentifier] null,
[PROSPECTPLANDIMID] [int] null,
[CONSTITUENTSYSTEMID] [uniqueidentifier] null,
[CONSTITUENTDIMID] [int] null,
[PROSPECTPLANTYPESYSTEMID] [uniqueidentifier] null,
[PROSPECTPLANSTATUSSYSTEMID] [uniqueidentifier] null,
[PROSPECTPLANSTATUSDIMID] [int] null,
[ISINCLUDED] [bit] null,
[ETLCONTROLID] [int] null,
[SOURCEDIMID] [int] null,
constraint [PK_FACT_PROSPECTPLANSTAGEOCCURRENCE_EXT] primary key clustered ([PROSPECTPLANSTAGEOCCURRENCEFACTID] asc)
) on [BBRPT_FACTGROUP]

]]>
</ExecuteSql>

</DBRevision>

Create Table Revision for Stage (used by Overlapping and Nonconsecutive Perspectives)
<DBRevision ID="15">
<ExecuteSql>
<![CDATA[

create table [BBDW].[FACT_PROSPECTPLANSTAGE_EXT] (
[PROSPECTPLANSTAGEFACTID] [int] IDENTITY(1, 1) not null,
[STARTDATETIME] [datetime] null,
[STARTDATEDIMID] [int] null,
[ENDDATETIME] [datetime] null,
[ENDDATEDIMID] [int] null,
[STAGEDURATIONOVERLAPPING] [datetime] null,
[STAGEDURATIONNONCONSECUTIVE] [datetime] null,
[PROSPECTPLANSYSTEMID] [uniqueidentifier] null,
[PROSPECTPLANDIMID] [int] null,
[CONSTITUENTSYSTEMID] [uniqueidentifier] null,
[CONSTITUENTDIMID] [int] null,
[PROSPECTPLANTYPESYSTEMID] [uniqueidentifier] null,
[PROSPECTPLANSTATUSSYSTEMID] [uniqueidentifier] null,
[PROSPECTPLANSTATUSDIMID] [int] null,
[ISINCLUDED] [bit] null,
[ETLCONTROLID] [int] null,
[SOURCEDIMID] [int] null,

123 CHAPTER 7

constraint [PK_FACT_PROSPECTPLANSTAGE_EXT] primary key clustered ([PROSPECTPLANSTAGEFACTID] asc)
) on [BBRPT_FACTGROUP]

]]>

Other Items to Support the Stage and Stage Occurrence Tables

As with other data warehouse revisions which create tables, there should be a staging table, stored procedures for indexes, table truncation, and MS_
Description comments for mapping. The revisions file should include each of these. Also, a view of each table is desirable.

But the bulk of the work comes with the SSIS packages to perform the ETL. The ETL process for these tables will bemore complex than with the previous
example. This is because the stage and stage occurrence tables have rows which are based on multiple rows in the Interaction table in the OLTP database.
For the previous versions of the report in this document, these transformations were performed by the stored procedures used by the report. The idea
behind these extensions is to transfer that workload for the report's stored procedures to the ETL process. The report stored procedures will then be sim-
plified to calculating the aggregates and not performing the prerequisite transformations of the Interaction table.

Fortunately, we have already worked through this logic in the course of building the previous report version's stored procedures. So to create the
SSIS packages for the Stage and Stage Occurrence tables, we can transfer that logic to the SSIS packages.

BBDW_FACT_PROSPECTPLANSTAGEOCCURRENCE_
EXT.dtsx
Here are is selected information from the ETL for the stage occurrence table:

Truncate Staging SQLStatement
truncate table BBDW.[FACT_PROSPECTPLANSTAGEOCCURRENCE_EXT_STAGE];

exec BBDW.[CREATE_OR_DROP_FACT_PROSPECTPLANSTAGEOCCURRENCE_EXT_STAGE_INDICES] 0;

New and Changed Rows from OLTP SQL command text
with [STEPS]
as (

select row_number() over (
order by i.[PROSPECTPLANID],

i.[ACTUALSTARTDATETIME]
) as [ALLSTEPSEQUENCENUMBER],

i.[ACTUALSTARTDATETIME],
i.[ACTUALENDDATETIME],
i.[PROSPECTPLANID],
max(i.[ACTUALENDDATETIME])

over (partition by i.[PROSPECTPLANID]) as [LASTSTEPINPLANENDDATETIME],
i.[PROSPECTPLANSTATUSCODEID]

from [INTERACTION] as i
inner join [PROSPECTPLAN] pl on i.[PROSPECTPLANID] = pl.[ID]
where i.[COMPLETED] = 1
),

[STAGEOCCURRENCESFIRSTPASS]
as (

select s.[ACTUALSTARTDATETIME],
s.[ACTUALENDDATETIME],
r.[PROSPECTPLANSTATUSCODEID] as [PREVIOUSSTEPPROSPECTPLANSTATUSCODEID],
s.[PROSPECTPLANSTATUSCODEID],
r.[PROSPECTPLANID] as [PREVIOUSSTEPPROSPECTPLANID],
s.[PROSPECTPLANID],
s.[LASTSTEPINPLANENDDATETIME]

from [STEPS] as s
left join [STEPS] as t on s.[ALLSTEPSEQUENCENUMBER] + 1 = t.[ALL-

STEPSEQUENCENUMBER]
left join [STEPS] as r on s.[ALLSTEPSEQUENCENUMBER] - 1 = r.

[ALLSTEPSEQUENCENUMBER]
),

[STAGEOCCURRENCES]
as (

select row_number() over (
order by sofp.[PROSPECTPLANID],

sofp.[ACTUALSTARTDATETIME]
) as [ALLSTAGEOCCURRENCESSEQUENCENUMBER],

sofp.[ACTUALSTARTDATETIME],
sofp.[ACTUALENDDATETIME],
sofp.[LASTSTEPINPLANENDDATETIME],

REPORTING OFF THE WAREHOUSE 124

sofp.[PROSPECTPLANID],
sofp.[PROSPECTPLANSTATUSCODEID],
pl.[PROSPECTPLANTYPECODEID],
pl.[PROSPECTID]

from [STAGEOCCURRENCESFIRSTPASS] as sofp
inner join [PROSPECTPLAN] pl on sofp.[PROSPECTPLANID] = pl.[ID]
where sofp.[PROSPECTPLANID] <> sofp.[PREVIOUSSTEPPROSPECTPLANID]

or (
(sofp.[PROSPECTPLANSTATUSCODEID] <> sofp.[PRE-

VIOUSSTEPPROSPECTPLANSTATUSCODEID])
and (sofp.[PROSPECTPLANID] = sofp.[PREVIOUSSTEPPROSPECTPLANID])
)

)
select so1.[ACTUALSTARTDATETIME] as [STARTDATETIME],

so1.[ACTUALENDDATETIME] as [ENDDATETIME],
"STAGEOCCURRENCEDURATION" = case

when so1.[ACTUALENDDATETIME] <> so1.[LASTSTEPINPLANENDDATETIME]
then so2.[ACTUALSTARTDATETIME] - so1.[ACTUALSTARTDATETIME]

when so1.[ACTUALENDDATETIME] = so1.[LASTSTEPINPLANENDDATETIME]
then so1.[ACTUALENDDATETIME] - so1.[ACTUALSTARTDATETIME]

end,
so1.[PROSPECTPLANID] as [PROSPECTPLANSYSTEMID],
so1.[PROSPECTPLANSTATUSCODEID] as [PROSPECTPLANSTATUSSYSTEMID],
so1.[PROSPECTPLANTYPECODEID] as [PROSPECTPLANTYPESYSTEMID],
so1.[PROSPECTID] as [CONSTITUENTSYSTEMID],
1 as ISINCLUDED

from [STAGEOCCURRENCES] as so1
left join [STAGEOCCURRENCES] as so2

on so1.ALLSTAGEOCCURRENCESSEQUENCENUMBER + 1 = so2.A-
LLSTAGEOCCURRENCESSEQUENCENUMBER

Date Dims
ISNULL(STARTDATETIME) ? 0 : YEAR(STARTDATETIME) * 10000 + MONTH(STARTDATETIME) *
100 + DAY(STARTDATETIME)

ISNULL(ENDDATETIME) ? 0 : YEAR(ENDDATETIME) * 10000 + MONTH(ENDDATETIME) * 100 +
DAY(ENDDATETIME)

Lookup Prospect Plan
select [PROSPECTPLANDIMID], [PROSPECTPLANSYSTEMID] from [BBDW].[DIM_PROS-
PECTPLAN]

125 CHAPTER 7

Lookup Prospect Plan Status
select [PROSPECTPLANSTATUSDIMID], [PROSPECTPLANSTATUSSYSTEMID] from [BBDW].[DIM_
PROSPECTPLANSTATUS]

REPORTING OFF THE WAREHOUSE 126

Lookup Prospect
select [CONSTITUENTDIMID], [CONSTITUENTSYSTEMID] from [BBDW].[DIM_PROSPECT]

127 CHAPTER 7

Stage Rows

REPORTING OFF THE WAREHOUSE 128

Add Staging Indices
exec BBDW.[CREATE_OR_DROP_FACT_PROSPECTPLANSTAGEOCCURRENCE_EXT_STAGE_INDICES] 1;

129 CHAPTER 7

Upsert
declare @COUNTS table (

[ACTION] varchar(28),
[INSERTED] int,
[UPDATED] int
);

merge BBDW.[FACT_PROSPECTPLANSTAGEOCCURRENCE_EXT] as t
using (

select p.[STARTDATETIME],
p.[STARTDATEDIMID],
p.[ENDDATETIME],
p.[ENDDATEDIMID],
p.[STAGEOCCURRENCEDURATION],
p.[PROSPECTPLANSYSTEMID],
p.[PROSPECTPLANDIMID],
p.[CONSTITUENTSYSTEMID],
p.[CONSTITUENTDIMID],
p.[PROSPECTPLANTYPESYSTEMID],
p.[PROSPECTPLANSTATUSSYSTEMID],
p.[PROSPECTPLANSTATUSDIMID],
p.[ISINCLUDED],
p.[ETLCONTROLID],
p.[SOURCEDIMID]

from BBDW.[FACT_PROSPECTPLANSTAGEOCCURRENCE_EXT_STAGE] p
) as s
on (t.[STARTDATETIME] = s.[STARTDATETIME])

and (t.[ENDDATETIME] = s.[ENDDATETIME])
and (t.[PROSPECTPLANSTATUSSYSTEMID] = s.[PROSPECTPLANSTATUSSYSTEMID])
and (t.[PROSPECTPLANTYPESYSTEMID] = s.[PROSPECTPLANTYPESYSTEMID])
and (t.[PROSPECTPLANSYSTEMID] = s.[PROSPECTPLANSYSTEMID])

when not matched by target
then

insert (
[STARTDATETIME],
[STARTDATEDIMID],
[ENDDATETIME],
[ENDDATEDIMID],
[STAGEOCCURRENCEDURATION],
[PROSPECTPLANSYSTEMID],
[PROSPECTPLANDIMID],
[CONSTITUENTSYSTEMID],
[CONSTITUENTDIMID],
[PROSPECTPLANTYPESYSTEMID],
[PROSPECTPLANSTATUSSYSTEMID],
[PROSPECTPLANSTATUSDIMID],
[ISINCLUDED],
[ETLCONTROLID],
[SOURCEDIMID]
)

values (
s.[STARTDATETIME],
s.[STARTDATEDIMID],
s.[ENDDATETIME],
s.[ENDDATEDIMID],
s.[STAGEOCCURRENCEDURATION],
s.[PROSPECTPLANSYSTEMID],

REPORTING OFF THE WAREHOUSE 130

s.[PROSPECTPLANDIMID],
s.[CONSTITUENTSYSTEMID],
s.[CONSTITUENTDIMID],
s.[PROSPECTPLANTYPESYSTEMID],
s.[PROSPECTPLANSTATUSSYSTEMID],
s.[PROSPECTPLANSTATUSDIMID],
s.[ISINCLUDED],
s.[ETLCONTROLID],
s.[SOURCEDIMID]
)

when matched
then

update
set t.[STARTDATETIME] = s.[STARTDATETIME],

t.[STARTDATEDIMID] = s.[STARTDATEDIMID],
t.[ENDDATETIME] = s.[ENDDATETIME],
t.[ENDDATEDIMID] = s.[ENDDATEDIMID],
t.[STAGEOCCURRENCEDURATION] = s.[STAGEOCCURRENCEDURATION],
t.[PROSPECTPLANSYSTEMID] = s.[PROSPECTPLANSYSTEMID],
t.[PROSPECTPLANDIMID] = s.[PROSPECTPLANDIMID],
t.[CONSTITUENTSYSTEMID] = s.[CONSTITUENTSYSTEMID],
t.[CONSTITUENTDIMID] = s.[CONSTITUENTDIMID],
t.[PROSPECTPLANTYPESYSTEMID] = s.[PROSPECTPLANTYPESYSTEMID],
t.[PROSPECTPLANSTATUSSYSTEMID] = s.[PROSPECTPLANSTATUSSYSTEMID],
t.[PROSPECTPLANSTATUSDIMID] = s.[PROSPECTPLANSTATUSDIMID],
t.[ISINCLUDED] = s.[ISINCLUDED],
t.[ETLCONTROLID] = s.[ETLCONTROLID],
t.[SOURCEDIMID] = s.[SOURCEDIMID]

output $action,
case

when deleted.[ETLCONTROLID] is null
then 1

else 0
end,

case
when deleted.[ETLCONTROLID] is not null

then 1
else 0
end

into @COUNTS;

select count(*) as [TOTAL],
isnull(sum([INSERTED]), 0) as [INSERTED],
isnull(sum([UPDATED]), 0) as [UPDATED]

from @COUNTS

Adding Indices
exec BBDW.[CREATE_OR_DROP_FACT_PROSPECTPLANSTAGEOCCURRENCE_EXT_INDICES] 1;

131 CHAPTER 7

Appendix
The following topics are included for your reference:

Application Features 132

Create a Report Spec 141

Exploring a Report Spec 142

Application Features
To help surf the sea of features in the system (~20k specs at last count), Blackbaud as created a series of tasks
located in a newApplication\Features folder in Administration. These tasks treat our platform idioms
(data forms, data lists, pages, record operations, etc) just like any other 1st-class entity in the system (con-
stituents, interactions, revenue, etc) and allow you to search for an item and go to a page to see details about
that item. We even shine a spotlight on newly added features via the New Features tasks.

This is super-useful if you’re a developer wanting to get more information on a feature or see where a given fea-
ture is used. It’s also nice for IT staff to be able to see the features from a low-level perspective and access the
security permissions for the feature.

So when you navigate to Administration>Application> Features, you’ll see the following series of tasks:

chapter 0

Let’s dive into a few of these tasks!

Record Types

The first three tasks in the list allow you to see groups of features from a macro perspective. By using the tasks in
the Record Types group, you can really get an idea of the scale and scope of a particular record type. You can
search for a record type, view the list of record types (usually the “root” record types), or view a list of newly
added record types.

133 CHAPTER 0

You can see the features that support the record type and from here drill into the detail page for a given type of
feature.

For example, if you select the Constituent record type, you’ll see just howmany features we have that either
require or return records of type Constituent (a lot!):

APPENDIX 134

Features

The tasks in the Features group let you search for themost popular types of features in the system (not all spec
types are represented currently). When you search for and select a feature, you’ll see a page with detailed infor-
mation about the feature itself.

As an example, if you use theData List Search task and search for the “Contact Information List”, you’ll be taken
to theData List page. Here you’ll see themost relevant metadata about the list, include the ID, record type,

135 CHAPTER 0

implementation details, as well as whether or not the feature is installed. You can also see the output fields and
filters, and viewwhich pages and dashboards make use of this list (VERY handy!).

The API tab even provides a reference for developers on how to use this data list from a variety of APIs. If you’re
writing .NET client-side code and want to set a reference to one of our Black-
baud.AppFx.*.WebAPIClient assemblies (which are now being created as part of the build!!) this tab
shows you which assembly contains the wrapper for this feature. You can also see the SOAP and BizOp URLs to

APPENDIX 136

use to get the data returned by the data list. For more information on choosing the best Infinity Web Service to
suit your needs, see Introduction to the Infinity Web Service APIs.

137 CHAPTER 0

APPENDIX 138

New Features

The tasks in the New Features group spotlight newly added features in the past 30/60/90/etc days. This is very
handy to know if you’re trying to keep track of what’s being added to the system. Note that these lists all sup-
port RSS feeds and notifications, so you can even get toast/email when someone adds a new spec to the system!

For example, here are the record operations that have been added in the past 30 days:

New Ad-hoc Query Views

In addition to creating these pages, We have also created new ad-hoc query views to allow querying over our plat-
form featuremetadata. You can now create queries of data forms, data lists, record operations, smart fields, etc
and use the full power of our query tool semantics to mine the features in the system.

For example, want to knowwhich data lists in the system have themost number of output fields? Use the Data
List query and include the COUNT(OutputFields\ID) sorted by the count descending:

139 CHAPTER 0

APPENDIX 140

This suite of functionality should go a long way towards helping you manage the vast amount of features that
make up the system.

Create a Report Spec
To create a newReport Spec, add a new item to yourMicrosoft Visual Studio solution’s Blackbaud AppFx
project:

1. Right-click the project.

2. Click Add >New item.

3. Select Blackbaud AppFx Catalog as the category of the item.

4. Select Report Spec.

After a Report Spec has been added to the project, you will notice the spec contains a RDLFileName,
Folder, and DataRetrieval element. Within the DataRetrieval element, a stored procedure has
been stubbed out for you in the CreateSQL element. It also attempts to name the report and .rdl file based
on the filename selected.

141 CHAPTER 0

<ReportSpec
xmlns="bb_appfx_report"
xmlns:common="bb_appfx_commontypes"
ID="d0d55376-82cb-4176-8268-35910164175f"
Name="FoodBankTransactionTotals Report"
Description="REPLACE_WITH_DESCRIPTION"
Author="Blackbaud Product Development"
>

<RDLFileName>FoodBankTransactionTotals.rdl</RDLFileName>
<Folder>System Reports/Misc Reports</Folder>

<DataRetrieval>
<CreateSQL ObjectName="dbo.USP_REPORT_xxx" ObjectType="SQLStoredProc">

<![CDATA[
create procedure dbo.USP_REPORT_xxx
(
<list any report parameters here>
)
as

<build the report SQL here>
]]>

</CreateSQL>
</DataRetrieval>

</ReportSpec>

When the Report Spec is loaded, it will create the stored procedure specified in the database as well as load the
.rdl file specified into Reporting Services.

Exploring a Report Spec
Report Specs are composed of four main elements:

l RDLFileName
l Folder
l DataRetrieval
l DataSource (optional)

RDLFileName

The RDLFileName element contains the name of the .rdl file for the report itself. The .rdl file will be
uploaded to the Report Server when the Report Spec is loaded. The .rdl file itself must also be included in the
same Blackbaud AppFx project as an Embedded Resource.

Note: The Report Designer for .rdl files is included in the SQL Server install as part of the Business Intelligence
Development Studio for SQL Server 2008 or SQL Server 2008 R2 and is not part of the standard Visual Studio
installation. If your Blackbaud AppFx project is in Visual Studio 2010, you will likely want to create/edit the
report itself in a separate Visual Studio 2008 project and then copy the .rdl file into the Visual Studio 2010
project.

APPENDIX 142

http://msdn.microsoft.com/en-us/library/cc281390.aspx
http://msdn.microsoft.com/en-us/library/cc281390.aspx
http://msdn.microsoft.com/en-us/library/ms173767.aspx
http://msdn.microsoft.com/en-us/library/ms173767.aspx
http://msdn.microsoft.com/en-us/library/ms173767.aspx
http://msdn.microsoft.com/en-us/library/ms173767.aspx

SQL Server 2012 includes the Report Designer as part of SQL Server Data Tools and should allow you to create the
Blackbaud AppFx project and the .rdl file in Visual Studio 2010.

Folder

The Folder element contains the folder that the report will be deployed to on the Reporting Server. This
should be a relative path from Blackbaud\AppFx\<DatabaseName>. For example <Folder>Sample
Reports\Food Bank</Folder> would deploy the report to something like Black-
baud\AppFx\BBInfinity\Sample Reports\Food Bank on the Report Server.

DataRetrieval

The DataRetrieval element can contain one or more CreateSQL elements that are used to either create
Transact-SQL objects or grant permissions to Transact-SQL objects.

For example, the following would create the stored procedure dbo.USR_USP_REPORT_FOOD-
BANKTRANSACTIONTOTALS as well as grant the BBAPPFXREPORTROLE rights to execute the stored pro-
cedure. The report (rdl) itself would then include a Dataset that used the stored procedure.

<CreateSQL ObjectName="dbo.USR_USP_REPORT_FOODBANKTRANSACTIONTOTALS" Object-
Type="SQLStoredProc">

<![CDATA[
create procedure dbo.USR_USP_REPORT_FOODBANKTRANSACTIONTOTALS as

select
c.[KEYNAME] as [FOODBANK],
f.[DESCRIPTION],
fh.[FOODBANKTXTYPE] as [TRANSACTIONTYPE],
fi.[NAME] as [FOODITEM],
sum(ft.[FOODITEMAMOUNT]) as [TOTALFOODITEMAMOUNT],
sum(ft.[QUANTITY]) as [TOTALFOODITEMQUANTITY]

from dbo.[USR_FOODBANK] f
left join dbo.[CONSTITUENT] c on c.[ID] = f.[CONSTITUENTID]
inner join dbo.[USR_FOODBANKTXHEADER] fh on fh.[FOODBANKID] = f.[ID]
left join dbo.[USR_FOODBANKTXDETAIL] ft on ft.[FOODBANKTXHEADERID] =

fh.[ID]
left join dbo.[USR_FOODITEM] fi on fi.[ID] = ft.[FOODITEMID]
group by
c.[KEYNAME],
f.[DESCRIPTION],
fh.[FOODBANKTXTYPE],
fi.[NAME]

]]>
</CreateSQL>

Alternatively, the report may contain a Dataset using embedded Transact-SQL. In this case, the report author
would include the Transact-SQL for the report in the .rdl file itself. The BBAPPFXREPORTROLE will still need
to be granted rights to the individual tables referenced in the Dataset. This can also be done using the Crea-
teSQL element of the Report Spec. Here is a sample that would grant SELECT permissions to the BBAPPFXRE-
PORTROLE for the USR_FOODBANK table.

<CreateSQL ObjectName="USR_FOODBANK" ObjectType="SQLTable"/>

DataSource

143 CHAPTER 0

http://msdn.microsoft.com/en-us/library/ms173745(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms173745(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms173745(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms173745(v=sql.110).aspx

The DataSource element is optional for the Report Spec. Many reports will pull their data directly from the
Infinity database. In this case, the DataSource element is not needed as the data source within the report will
be updated to use the Infinity data source (BBAppFxDB) when the Report Spec is loaded.

However, reports may leverage any data source that is available in Reporting Services by specifying the relative
path to the data source in the DataSource element. For example, the belowwill update the data source in the
report to use the Blackbaud Data Warehouse.

<DataSource>
<DataSourceRelativePath>Blackbaud OLAP Reports/Blackbaud OLAP SQL data

source</DataSourceRelativePath>
</DataSource>

APPENDIX 144

https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/welcomebbdwsdk.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/welcomebbdwsdk.htm
https://www.blackbaud.com/files/support/guides/infinitydevguide/Subsystems/bbdw-developer-help/content/welcomebbdwsdk.htm

145 CHAPTER 0

	Creating Blackbaud CRM Reports
	Code Samples for the Report
	Prospect Plan Status Durations Report
	Finding the Data
	Finding the Data in the Application
	Finding Data in the OLTP Database
	Finding Data in the Data Warehouse Database
	Code Formatting
	Creating an OLTP Version
	Overlapping Perspective Stored Procedure
	Consecutive Perspective Stored Procedure
	Nonconsecutive Perspective Stored Procedure

	Wiring up the Report
	Create an RDL File
	Create a Report Spec
	Report Spec for OLTP Version

	Create a Page, Task, and Package
	Load the Package

	Polishing the Report
	Formatting the Report
	Adding Parameters
	Update the RDL File with the Parameter
	Add a UI Model for the Parameter
	ProspectPlanStatusDurationsReportUIModel.vb
	ProspectPlanStatusDurationsReport.html

	Reporting off the Warehouse
	Should the Report Query a Table or a View?
	Something is Missing from the Table or View
	Creating a Data Warehouse Version
	Extending the Warehouse with a Table to Extend the Fact
	Creating Another Data Warehouse Version
	Extending the Data Warehouse with New Tables and Views
	BBDW_FACT_PROSPECTPLANSTAGEOCCURRENCE_EXT.dtsx

	Appendix
	Application Features
	Create a Report Spec
	Exploring a Report Spec

